On the extremal cacti with minimum Sombor index

IF 1.8 3区 数学 Q1 MATHEMATICS
Qiaozhi Geng, Shengjie He, Rong-Xia Hao
{"title":"On the extremal cacti with minimum Sombor index","authors":"Qiaozhi Geng, Shengjie He, Rong-Xia Hao","doi":"10.3934/math.20231537","DOIUrl":null,"url":null,"abstract":"<abstract><p>Let $ H $ be a graph with edge set $ E_H $. The Sombor index and the reduced Sombor index of a graph $ H $ are defined as $ SO(H) = \\sum\\limits_{uv\\in E_H}\\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $ and $ SO_{red}(H) = \\sum\\limits_{uv\\in E_H}\\sqrt{(d_{H}(u)-1)^{2}+(d_{H}(v)-1)^{2}} $, respectively. Where $ d_{H}(u) $ and $ d_{H}(v) $ are the degrees of the vertices $ u $ and $ v $ in $ H $, respectively. A cactus is a connected graph in which any two cycles have at most one common vertex. Let $ \\mathcal{C}(n, k) $ be the class of cacti of order $ n $ with $ k $ cycles. In this paper, the lower bound for the Sombor index of the cacti in $ \\mathcal{C}(n, k) $ is obtained and the corresponding extremal cacti are characterized when $ n\\geq 4k-2 $ and $ k\\geq 2 $. Moreover, the lower bound of the reduced Sombor index of cacti is obtained by similar approach.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"19 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231537","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $ H $ be a graph with edge set $ E_H $. The Sombor index and the reduced Sombor index of a graph $ H $ are defined as $ SO(H) = \sum\limits_{uv\in E_H}\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $ and $ SO_{red}(H) = \sum\limits_{uv\in E_H}\sqrt{(d_{H}(u)-1)^{2}+(d_{H}(v)-1)^{2}} $, respectively. Where $ d_{H}(u) $ and $ d_{H}(v) $ are the degrees of the vertices $ u $ and $ v $ in $ H $, respectively. A cactus is a connected graph in which any two cycles have at most one common vertex. Let $ \mathcal{C}(n, k) $ be the class of cacti of order $ n $ with $ k $ cycles. In this paper, the lower bound for the Sombor index of the cacti in $ \mathcal{C}(n, k) $ is obtained and the corresponding extremal cacti are characterized when $ n\geq 4k-2 $ and $ k\geq 2 $. Moreover, the lower bound of the reduced Sombor index of cacti is obtained by similar approach.

在仙人掌的末端有最小的Sombor指数
&lt;abstract&gt;&lt; &gt;设$ H $为边集$ E_H $的图。定义图$ H $的Sombor指数和约简Sombor指数分别为$ SO(H) = \sum\limits_{uv\in E_H}\sqrt{d_{H}(u)^{2}+d_{H}(v)^{2}} $和$ SO_{red}(H) = \sum\limits_{uv\in E_H}\sqrt{(d_{H}(u)-1)^{2}+(d_{H}(v)-1)^{2}} $。其中$ d_{H}(u) $和$ d_{H}(v) $分别是$ H $中顶点$ u $和$ v $的度数。仙人掌是一个连通图,其中任意两个环最多有一个公共顶点。设$ \mathcal{C}(n, k) $为次为$ n $的仙人掌类,周期为$ k $。本文得到了$ \mathcal{C}(n, k) $中仙人掌Sombor指数的下界,并在$ n\geq 4k-2 $和$ k\geq 2 $中对对应的仙人掌极值进行了表征。此外,用类似的方法得到了仙人掌的Sombor指数的下界。&lt;/ &lt;/abstract&gt;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信