Preparation and performance of silicone-modified 3D printing photosensitive materials

IF 3.2 3区 化学 Q2 POLYMER SCIENCE
e-Polymers Pub Date : 2023-01-01 DOI:10.1515/epoly-2023-0110
Jin Chen, Lu Zheng, Wenwen Zhou, Min Liu, Yuyu Gao, Jiaqiang Xie
{"title":"Preparation and performance of silicone-modified 3D printing photosensitive materials","authors":"Jin Chen, Lu Zheng, Wenwen Zhou, Min Liu, Yuyu Gao, Jiaqiang Xie","doi":"10.1515/epoly-2023-0110","DOIUrl":null,"url":null,"abstract":"Abstract Herein, the performance of silicone-modified 3D printing photosensitive resin was examined. Bisphenol-A epoxy acrylate (EA) was used as the substrate and isophorone diisocyanate, hydroxy-silicone oil, and hydroxyethyl acrylate were used as the raw materials. A silicone intermediate was synthesized to modify the substrate to prepare the 3D printing photosensitive material. The as-synthesized materials were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The tensile fracture morphology was also analyzed. The effects of the addition of silicone intermediates on the mechanical properties, thermal stability, and shrinkage of the prepared 3D printing photosensitive resins were investigated. The results showed that an organosilicone group was successfully introduced into the side chain of EA. When the ratio of n (silicone): n (EA) is 0.3:1, the material has a high impact strength of 19.4 kJ·m −2 , which is 32.8% higher than that of the pure resin; in addition, the elongation at break is 8.65% (compared to 6.56% of the pure resin). The maximum thermal weight loss temperature is 430.33°C, which is 6°C higher than that of the pure resin.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":"4 1","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0110","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Herein, the performance of silicone-modified 3D printing photosensitive resin was examined. Bisphenol-A epoxy acrylate (EA) was used as the substrate and isophorone diisocyanate, hydroxy-silicone oil, and hydroxyethyl acrylate were used as the raw materials. A silicone intermediate was synthesized to modify the substrate to prepare the 3D printing photosensitive material. The as-synthesized materials were characterized using Fourier transform infrared spectroscopy and scanning electron microscopy. The tensile fracture morphology was also analyzed. The effects of the addition of silicone intermediates on the mechanical properties, thermal stability, and shrinkage of the prepared 3D printing photosensitive resins were investigated. The results showed that an organosilicone group was successfully introduced into the side chain of EA. When the ratio of n (silicone): n (EA) is 0.3:1, the material has a high impact strength of 19.4 kJ·m −2 , which is 32.8% higher than that of the pure resin; in addition, the elongation at break is 8.65% (compared to 6.56% of the pure resin). The maximum thermal weight loss temperature is 430.33°C, which is 6°C higher than that of the pure resin.
硅改性3D打印光敏材料的制备与性能研究
摘要本文研究了硅改性3D打印光敏树脂的性能。以双酚a型环氧丙烯酸酯(EA)为底物,异佛尔酮二异氰酸酯、羟基硅油和丙烯酸羟乙酯为原料。合成有机硅中间体对基材进行改性,制备3D打印光敏材料。利用傅里叶变换红外光谱和扫描电镜对合成材料进行了表征。对拉伸断口形貌进行了分析。研究了有机硅中间体的加入对制备的3D打印光敏树脂的力学性能、热稳定性和收缩率的影响。结果表明:在EA侧链上成功引入了有机硅基团,当n(有机硅):n (EA)为0.3:1时,材料的抗冲击强度达到19.4 kJ·m−2,比纯树脂提高了32.8%;此外,断裂伸长率为8.65%(纯树脂为6.56%)。最大热失重温度为430.33℃,比纯树脂高6℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
e-Polymers
e-Polymers 化学-高分子科学
CiteScore
5.90
自引率
10.80%
发文量
64
审稿时长
6.4 months
期刊介绍: e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome. The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信