Identification of in-sample positivity violations using regression trees: The PoRT algorithm

IF 1.7 4区 医学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Gabriel Danelian, Yohann Foucher, Maxime Léger, Florent Le Borgne, Arthur Chatton
{"title":"Identification of in-sample positivity violations using regression trees: The PoRT algorithm","authors":"Gabriel Danelian, Yohann Foucher, Maxime Léger, Florent Le Borgne, Arthur Chatton","doi":"10.1515/jci-2022-0032","DOIUrl":null,"url":null,"abstract":"Abstract Background The positivity assumption is crucial when drawing causal inferences from observational studies, but it is often overlooked in practice. A violation of positivity occurs when the sample contains a subgroup of individuals with an extreme relative frequency of experiencing one of the levels of exposure. To correctly estimate the causal effect, we must identify such individuals. For this purpose, we suggest a regression tree-based algorithm. Development Based on a succession of regression trees, the algorithm searches for combinations of covariate levels that result in subgroups of individuals with a low (un)exposed relative frequency. Application We applied the algorithm by reanalyzing four recently published medical studies. We identified the two violations of the positivity reported by the authors. In addition, we identified ten subgroups with a suspicion of violation. Conclusions The PoRT algorithm helps to detect in-sample positivity violations in causal studies. We implemented the algorithm in the R package RISCA to facilitate its use.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"259 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jci-2022-0032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Background The positivity assumption is crucial when drawing causal inferences from observational studies, but it is often overlooked in practice. A violation of positivity occurs when the sample contains a subgroup of individuals with an extreme relative frequency of experiencing one of the levels of exposure. To correctly estimate the causal effect, we must identify such individuals. For this purpose, we suggest a regression tree-based algorithm. Development Based on a succession of regression trees, the algorithm searches for combinations of covariate levels that result in subgroups of individuals with a low (un)exposed relative frequency. Application We applied the algorithm by reanalyzing four recently published medical studies. We identified the two violations of the positivity reported by the authors. In addition, we identified ten subgroups with a suspicion of violation. Conclusions The PoRT algorithm helps to detect in-sample positivity violations in causal studies. We implemented the algorithm in the R package RISCA to facilitate its use.
使用回归树识别样本内阳性违规:PoRT算法
从观察性研究中得出因果推论时,积极假设是至关重要的,但在实践中经常被忽视。当样本中包含一个子群体,其经历某一暴露水平的相对频率非常高时,就会发生违反阳性的情况。为了正确估计因果关系,我们必须确定这样的个体。为此,我们提出了一种基于回归树的算法。基于一系列回归树,该算法搜索协变量水平的组合,从而产生低(非)暴露相对频率的个体亚群。我们通过重新分析最近发表的四项医学研究来应用该算法。我们查明了作者报告的两起违反阳性的事件。此外,我们确定了十个涉嫌违规的子群体。结论PoRT算法有助于在因果研究中检测样本内阳性违规。为了便于使用,我们在R包RISCA中实现了该算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Causal Inference
Journal of Causal Inference Decision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.90
自引率
14.30%
发文量
15
审稿时长
86 weeks
期刊介绍: Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信