{"title":"High productivity of immunostimulatory membrane vesicles of <i>Limosilactobacillus antri</i> using glycine","authors":"Shino YAMASAKI-YASHIKI, Yu SAKAMOTO, Keiko NISHIMURA, Azusa SAIKA, Takeshi ITO, Jun KUNISAWA, Yoshio KATAKURA","doi":"10.12938/bmfh.2023-029","DOIUrl":null,"url":null,"abstract":"Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria–bacteria and bacteria–host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer’s patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12938/bmfh.2023-029","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Nanosized membrane vesicles (MVs) released by bacteria play important roles in both bacteria–bacteria and bacteria–host interactions. Some gram-positive lactic acid bacteria produce MVs exhibiting immunoregulatory activity in the host. We found that both bacterial cells and MVs of Limosilactobacillus antri JCM 15950, isolated from the human stomach mucosa, enhance immunoglobulin A production by murine Peyer’s patch cells. However, the thick cell walls of gram-positive bacteria resulted in low MV production, limiting experiments and applications using MVs. In this study, we evaluated the effects of glycine, which inhibits cell wall synthesis, on the immunostimulatory MV productivity of L. antri. Glycine inhibited bacterial growth while increasing MV production, with 20 g/L glycine increasing MV production approximately 12-fold. Glycine was most effective at increasing MV production when added in the early exponential phase, which indicated that cell division in the presence of glycine increased MV production. Finally, glycine increased MV productivity approximately 16-fold. Furthermore, glycine-induced MVs promoted interleukin-6 production by macrophage-like J774.1 cells, and the immunostimulatory activity was comparable to that of spontaneously produced MVs. Our results indicate that glycine is an effective agent for improving the production of MVs with immunostimulatory activity in gram-positive lactic acid bacteria, which can be applied as mucosal adjuvants and functional foods.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.