{"title":"Numerical Fatigue Life Evaluation With Experimental Results for Type III Accumulators","authors":"Sang-Won Kim, Nobuhiro Yoshikawa","doi":"10.1115/1.4063042","DOIUrl":null,"url":null,"abstract":"Abstract Type III accumulator is widely used in hydrogen stations. A high-cost pressure cycle test is mandatory to ensure the safety of the accumulator in present regulations. To reduce the high cost, the aim is to develop a methodology of numerical fatigue life prediction, where an axisymmetric finite element model for the Type III accumulator is created precisely and actual loading process including autofrettage pressure is simulated. The alternating stress intensity is evaluated based on the instructions in KD-3 of 2015 ASME Boiler & Pressure Vessel Code, Section VIII, Division 3. By comparing stress amplitude distributions with the leak positions after the pressure cycle test, and plotting the results in the design fatigue curve, it could be shown that fatigue life prediction of Type III accumulator can be done by precise finite element analysis of the liner including dome part, where the principal axes of stress change in pressure cycle.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":"59 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063042","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Type III accumulator is widely used in hydrogen stations. A high-cost pressure cycle test is mandatory to ensure the safety of the accumulator in present regulations. To reduce the high cost, the aim is to develop a methodology of numerical fatigue life prediction, where an axisymmetric finite element model for the Type III accumulator is created precisely and actual loading process including autofrettage pressure is simulated. The alternating stress intensity is evaluated based on the instructions in KD-3 of 2015 ASME Boiler & Pressure Vessel Code, Section VIII, Division 3. By comparing stress amplitude distributions with the leak positions after the pressure cycle test, and plotting the results in the design fatigue curve, it could be shown that fatigue life prediction of Type III accumulator can be done by precise finite element analysis of the liner including dome part, where the principal axes of stress change in pressure cycle.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.