None A. Yadav, Mahendran Samykano, A. K. Pandey, V.V. Tyagi, R. Devarajan, K. Sudhakar, M. M. Noor
{"title":"A Systematic Review on Bio-Based Phase Change Materials","authors":"None A. Yadav, Mahendran Samykano, A. K. Pandey, V.V. Tyagi, R. Devarajan, K. Sudhakar, M. M. Noor","doi":"10.15282/ijame.20.2.2023.16.0814","DOIUrl":null,"url":null,"abstract":"Global warming and energy depletion are the main problems faced in recent years due to energy consumption by industries and the global population. Phase change materials (PCMs) with significant properties tend to store and release energy and fill the demand and supply gap. Most organic and inorganic PCMs are not considered environmentally eco-friendly when used for thermal energy storage (TES). Because they are formed from non-conventional energy resources, their carbon footmark and environmental effect are not ignored. To reduce problems, an urgent need for eco-friendly materials is required. Green substitute bio-based phase change materials (BPCMs) have gained extensive attention and are considered the best suitable replacement for organic and inorganic PCMs because BPCMs exhibit significant properties that are cost-effective, eco-friendly, renewable and convenient for thermal energy storage. However, the thermal conductivity of BPCMs is too low, which delays TES and heat transfer rates. Furthermore, this paper summarizes the reduction of low thermal conductivity problems with the help of highly conductive nanoparticles dispersed into the BPCMs and the fabrication methods of BPCMs composites. This article also provides information for futuristic researchers about the methods of fabrication and factors for enhancing the thermal conductivity of an eco-friendly BPCM composite and draws an important conclusion from the literature.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.16.0814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Global warming and energy depletion are the main problems faced in recent years due to energy consumption by industries and the global population. Phase change materials (PCMs) with significant properties tend to store and release energy and fill the demand and supply gap. Most organic and inorganic PCMs are not considered environmentally eco-friendly when used for thermal energy storage (TES). Because they are formed from non-conventional energy resources, their carbon footmark and environmental effect are not ignored. To reduce problems, an urgent need for eco-friendly materials is required. Green substitute bio-based phase change materials (BPCMs) have gained extensive attention and are considered the best suitable replacement for organic and inorganic PCMs because BPCMs exhibit significant properties that are cost-effective, eco-friendly, renewable and convenient for thermal energy storage. However, the thermal conductivity of BPCMs is too low, which delays TES and heat transfer rates. Furthermore, this paper summarizes the reduction of low thermal conductivity problems with the help of highly conductive nanoparticles dispersed into the BPCMs and the fabrication methods of BPCMs composites. This article also provides information for futuristic researchers about the methods of fabrication and factors for enhancing the thermal conductivity of an eco-friendly BPCM composite and draws an important conclusion from the literature.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.