Tight Bound for the Number of Distinct Palindromes in a Tree

IF 0.7 4区 数学 Q2 MATHEMATICS
Paweł Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, Tomasz Waleń
{"title":"Tight Bound for the Number of Distinct Palindromes in a Tree","authors":"Paweł Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, Tomasz Waleń","doi":"10.37236/10842","DOIUrl":null,"url":null,"abstract":"For an undirected tree with edges labeled by single letters, we consider its substrings, which are labels of the simple paths between two nodes. A palindrome is a word $w$ equal to its reverse $w^R$. We prove that the maximum number of distinct palindromic substrings in a tree of $n$ edges satisfies $\\text{pal}(n)=O(n^{1.5})$. This solves an open problem of Brlek, Lafrenière, and Provençal (DLT 2015), who showed that $\\text{pal}(n)=\\Omega(n^{1.5})$. Hence, we settle the tight bound of $\\Theta(n^{1.5})$ for the maximum palindromic complexity of trees. For standard strings, i.e., for trees that are simple paths, the maximum palindromic complexity is exactly $n+1$.
 We also propose an $O(n^{1.5} \\log^{0.5}{n})$-time algorithm reporting all distinct palindromes and an $O(n \\log^2 n)$-time algorithm finding the longest palindrome in a tree.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"3 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/10842","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For an undirected tree with edges labeled by single letters, we consider its substrings, which are labels of the simple paths between two nodes. A palindrome is a word $w$ equal to its reverse $w^R$. We prove that the maximum number of distinct palindromic substrings in a tree of $n$ edges satisfies $\text{pal}(n)=O(n^{1.5})$. This solves an open problem of Brlek, Lafrenière, and Provençal (DLT 2015), who showed that $\text{pal}(n)=\Omega(n^{1.5})$. Hence, we settle the tight bound of $\Theta(n^{1.5})$ for the maximum palindromic complexity of trees. For standard strings, i.e., for trees that are simple paths, the maximum palindromic complexity is exactly $n+1$. We also propose an $O(n^{1.5} \log^{0.5}{n})$-time algorithm reporting all distinct palindromes and an $O(n \log^2 n)$-time algorithm finding the longest palindrome in a tree.
树中不同回文数目的紧界
对于边用单个字母标记的无向树,我们考虑它的子字符串,它们是两个节点之间简单路径的标签。回文是一个单词$w$等于它的反转$w^R$。证明了$n$条边树中不同回文子串的最大个数满足$\text{pal}(n)=O(n^{1.5})$。这解决了Brlek, lafreni和provenpalal (DLT 2015)的一个开放问题,他们表明$\text{pal}(n)=\Omega(n^{1.5})$。因此,我们确定了树的最大回文复杂度的紧界$\Theta(n^{1.5})$。对于标准字符串,即对于简单路径的树,最大回文复杂度正好是$n+1$ .
我们还提出了一个$O(n^{1.5} \log^{0.5}{n})$ -time算法报告所有不同的回文和一个$O(n \log^2 n)$ -time算法找到最长的回文树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信