{"title":"Investigation of Mechanical Properties of Grey Cast Irons Reinforced with Carbon Titanium Nitride (TiNC)","authors":"Rifat Yakut","doi":"10.3390/lubricants11100454","DOIUrl":null,"url":null,"abstract":"In this study, grey cast iron (GG25) was produced via reinforcement with carbon titanium nitride (TiNC) in different amounts (0%, 0.153%, 0.204% and 0.255%). Samples were made from this material according to the standards for hardness, compression and wear, and then experiments were conducted. The test conditions applied for the TiNC-reinforced samples were similarly applied to unreinforced samples. The TiNC-reinforced and unreinforced samples were compared regarding their compression, hardness, and wear properties. The results of the hardness tests showed the highest average hardness value of 215 HB for sample A (0% TiNC). For TiNC-reinforced specimens, the hardness values of the reinforced specimens increased with increasing reinforcement. Sample B (0.153% TiNC) had an average hardness value of 193 HB. For sample C (0.204% TiNC), an average hardness value of 200 HB was measured. For sample D (0.255% TiNC), an average hardness value of 204 HB was determined. Sample A’s highest compression strength value was 780 MPA (0% TiNC). Similar to the hardness test values, the compression strength of the reinforced samples increased with the increasing reinforcement rate. The compression test value was found to be 747 MPa for sample B (0.153% TiNC), 765 MPa for sample C (0.204% TiNC) and 778 MPa for sample D (0.255% TiNC). Wear tests were performed on all samples to examine changes in the wear volume loss, wear rate and friction coefficients. Scanning electron microscopy (SEM) was used to determine the wear mechanisms on the worn surfaces of the samples. When examining the wear condition of the samples with the same hardness value as a function of increasing load values, increases in the wear volume loss values were observed as the load value increased.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"25 3","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/lubricants11100454","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, grey cast iron (GG25) was produced via reinforcement with carbon titanium nitride (TiNC) in different amounts (0%, 0.153%, 0.204% and 0.255%). Samples were made from this material according to the standards for hardness, compression and wear, and then experiments were conducted. The test conditions applied for the TiNC-reinforced samples were similarly applied to unreinforced samples. The TiNC-reinforced and unreinforced samples were compared regarding their compression, hardness, and wear properties. The results of the hardness tests showed the highest average hardness value of 215 HB for sample A (0% TiNC). For TiNC-reinforced specimens, the hardness values of the reinforced specimens increased with increasing reinforcement. Sample B (0.153% TiNC) had an average hardness value of 193 HB. For sample C (0.204% TiNC), an average hardness value of 200 HB was measured. For sample D (0.255% TiNC), an average hardness value of 204 HB was determined. Sample A’s highest compression strength value was 780 MPA (0% TiNC). Similar to the hardness test values, the compression strength of the reinforced samples increased with the increasing reinforcement rate. The compression test value was found to be 747 MPa for sample B (0.153% TiNC), 765 MPa for sample C (0.204% TiNC) and 778 MPa for sample D (0.255% TiNC). Wear tests were performed on all samples to examine changes in the wear volume loss, wear rate and friction coefficients. Scanning electron microscopy (SEM) was used to determine the wear mechanisms on the worn surfaces of the samples. When examining the wear condition of the samples with the same hardness value as a function of increasing load values, increases in the wear volume loss values were observed as the load value increased.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding