Flexible organic electrochemical transistors for bioelectronics

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zeyu Zhao, Zhiyuan Tian, Feng Yan
{"title":"Flexible organic electrochemical transistors for bioelectronics","authors":"Zeyu Zhao, Zhiyuan Tian, Feng Yan","doi":"10.1016/j.xcrp.2023.101673","DOIUrl":null,"url":null,"abstract":"Flexible organic bioelectronic devices, which extract electronic signals from living systems, have been developed for sensing, recording, and monitoring various physiological states of biological systems. Organic electrochemical transistors (OECTs) have emerged as a promising platform for bioelectronics because of their inherent amplification function, high sensitivity, low cost, easy operation, and compatibility with flexible and wearable devices. This review provides a comprehensive overview of recent advancements in flexible OECTs for biosensing applications, including the fundamental principles and mechanisms of flexible OECTs, various channel materials used for biosensing, functionalization of OECTs for biosensing, use of flexible OECTs for the acquisition of biological signals, bioinformatics analysis of OECT-based biosensors, and development of biomimetic devices. The review concludes with a summary of the state-of-the-art technology for flexible OECT-based biosensors and the future outlook for this rapidly evolving field.","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"14 1","pages":"0"},"PeriodicalIF":7.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101673","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flexible organic bioelectronic devices, which extract electronic signals from living systems, have been developed for sensing, recording, and monitoring various physiological states of biological systems. Organic electrochemical transistors (OECTs) have emerged as a promising platform for bioelectronics because of their inherent amplification function, high sensitivity, low cost, easy operation, and compatibility with flexible and wearable devices. This review provides a comprehensive overview of recent advancements in flexible OECTs for biosensing applications, including the fundamental principles and mechanisms of flexible OECTs, various channel materials used for biosensing, functionalization of OECTs for biosensing, use of flexible OECTs for the acquisition of biological signals, bioinformatics analysis of OECT-based biosensors, and development of biomimetic devices. The review concludes with a summary of the state-of-the-art technology for flexible OECT-based biosensors and the future outlook for this rapidly evolving field.

Abstract Image

生物电子学用柔性有机电化学晶体管
柔性有机生物电子器件是一种从生命系统中提取电子信号的器件,用于传感、记录和监测生物系统的各种生理状态。有机电化学晶体管(OECTs)因其固有的放大功能、高灵敏度、低成本、易于操作以及兼容柔性和可穿戴设备而成为生物电子学的一个有前途的平台。本文综述了柔性oect在生物传感领域的最新进展,包括柔性oect的基本原理和机制、用于生物传感的各种通道材料、用于生物传感的oect的功能化、柔性oect在生物信号采集中的应用、基于oect的生物传感器的生物信息学分析以及仿生装置的发展。该综述总结了基于oect的柔性生物传感器的最新技术以及这一快速发展领域的未来展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信