Direct Image to Subtype Prediction for Brain Tumors using Deep Learning

IF 3.7 Q1 CLINICAL NEUROLOGY
Katherine J Hewitt, Chiara M L Löffler, Hannah Sophie Muti, Anna Sophie Berghoff, Christian Eisenlöffel, Marko van Treeck, Zunamys I Carrero, Omar S M El Nahhas, Gregory P Veldhuizen, Sophie Weil, Oliver L Saldanha, Laura Bejan, Thomas O Millner, Sebastian Brandner, Sascha Brückmann, Jakob Nikolas Kather
{"title":"Direct Image to Subtype Prediction for Brain Tumors using Deep Learning","authors":"Katherine J Hewitt, Chiara M L Löffler, Hannah Sophie Muti, Anna Sophie Berghoff, Christian Eisenlöffel, Marko van Treeck, Zunamys I Carrero, Omar S M El Nahhas, Gregory P Veldhuizen, Sophie Weil, Oliver L Saldanha, Laura Bejan, Thomas O Millner, Sebastian Brandner, Sascha Brückmann, Jakob Nikolas Kather","doi":"10.1093/noajnl/vdad139","DOIUrl":null,"url":null,"abstract":"Abstract Background Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N=2,845 patients. Results We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q co-deletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90 and 0.80 in the training cohort respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79 and 0.87 for prediction of IDH, ATRX and 1p19q co-deletion respectively. Conclusions In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.","PeriodicalId":94157,"journal":{"name":"Neuro-oncology advances","volume":"39 10","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/noajnl/vdad139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Background Deep Learning (DL) can predict molecular alterations of solid tumors directly from routine histopathology slides. Since the 2021 update of the World Health Organization (WHO) diagnostic criteria, the classification of brain tumors integrates both histopathological and molecular information. We hypothesize that DL can predict molecular alterations as well as WHO subtyping of brain tumors from hematoxylin and eosin-stained histopathology slides. Methods We used weakly supervised DL and applied it to three large cohorts of brain tumor samples, comprising N=2,845 patients. Results We found that the key molecular alterations for subtyping, IDH and ATRX, as well as 1p19q co-deletion, were predictable from histology with an area under the receiver operating characteristic curve (AUROC) of 0.95, 0.90 and 0.80 in the training cohort respectively. These findings were upheld in external validation cohorts with AUROCs of 0.90, 0.79 and 0.87 for prediction of IDH, ATRX and 1p19q co-deletion respectively. Conclusions In the future, such DL-based implementations could ease diagnostic workflows, particularly for situations in which advanced molecular testing is not readily available.
基于深度学习的脑肿瘤直接图像到亚型预测
背景深度学习(Deep Learning, DL)可以直接从常规组织病理切片中预测实体肿瘤的分子变化。自世界卫生组织(世卫组织)2021年更新诊断标准以来,脑肿瘤的分类整合了组织病理学和分子信息。我们假设DL可以通过苏木精和伊红染色的组织病理学切片预测脑肿瘤的分子改变和WHO亚型。方法我们使用弱监督深度学习,并将其应用于三个大的脑肿瘤样本队列,包括N=2,845例患者。结果我们发现,在训练队列中,亚型、IDH和ATRX以及1p19q共缺失的关键分子改变可以从组织学上预测,受试者工作特征曲线下面积(AUROC)分别为0.95、0.90和0.80。这些发现在外部验证队列中得到了证实,预测IDH、ATRX和1p19q共缺失的auroc分别为0.90、0.79和0.87。在未来,这种基于dl的实现可以简化诊断工作流程,特别是在不容易获得高级分子检测的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信