Aline Meyer Oliveira, H. J. (Ilja) van Meerveld, Marc Vis, Jan Seibert
{"title":"Assessment of the Value of Remotely Sensed Surface Water Extent Data for the Calibration of a Lumped Hydrological Model","authors":"Aline Meyer Oliveira, H. J. (Ilja) van Meerveld, Marc Vis, Jan Seibert","doi":"10.1029/2023wr034875","DOIUrl":null,"url":null,"abstract":"Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"29 4","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023wr034875","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract For many catchments, there is insufficient field data to calibrate the hydrological models that are needed to answer water resources management questions. One way to overcome this lack of data is to use remotely sensed data. In this study, we assess whether Landsat‐based surface water extent observations can inform the calibration of a lumped bucket‐type model for Brazilian catchments. We first performed synthetic experiments with daily, monthly, and limited monthly data (April–October), assuming a perfect monotonic relation between streamflow and stream width. The median relative performance was 0.35 for daily data and 0.17 for monthly data, where values above 0 imply an improvement in model performance compared to the lower benchmark. This indicates that the limited temporal resolution of remotely sensed data is not an impediment for model calibration. In a second step, we used real remotely sensed water extent data for calibration. For only 76 of the 671 sites the remotely sensed water extent was large and variable enough to be used for model calibration. For 30% of these sites, calibration with the actual remotely sensed water extent data led to a model fit that was better than the lower benchmark (i.e., relative performance >0). Model performance increased with river width and variation therein. This indicates that the coarse spatial resolution of the freely‐available, long time series of water extent used in this study hampered model calibration. We, therefore, expect that newer higher‐resolution imagery will be helpful for model calibration for more sites, especially when time series length increases.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.