{"title":"Advances in engineering genetic circuits for microbial biocontainment","authors":"Yuefeng Ma , Abhijit Manna , Tae Seok Moon","doi":"10.1016/j.coisb.2023.100483","DOIUrl":null,"url":null,"abstract":"<div><p><span>The development of synthetic biology has resulted in the use of genetically engineered microbes<span> (GEMs), becoming increasingly critical for addressing global issues such as health, food shortage, climate crisis, and environmental pollution. However, GEMs also pose a potential threat to the ecosystem, necessitating the implementation of biocontainment strategies. Synthetic genetic circuits have the potential to provide an additional level of safety and control beyond traditional physical containment measures. The development of biocontainment strategies is ongoing, including the use of kill switches, </span></span>auxotrophy, and stringent response circuits, to control the viability of GEMs. This review discusses the application and future directions of genetic circuits for microbial biocontainment strategies.</p></div>","PeriodicalId":37400,"journal":{"name":"Current Opinion in Systems Biology","volume":"36 ","pages":"Article 100483"},"PeriodicalIF":3.4000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452310023000409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of synthetic biology has resulted in the use of genetically engineered microbes (GEMs), becoming increasingly critical for addressing global issues such as health, food shortage, climate crisis, and environmental pollution. However, GEMs also pose a potential threat to the ecosystem, necessitating the implementation of biocontainment strategies. Synthetic genetic circuits have the potential to provide an additional level of safety and control beyond traditional physical containment measures. The development of biocontainment strategies is ongoing, including the use of kill switches, auxotrophy, and stringent response circuits, to control the viability of GEMs. This review discusses the application and future directions of genetic circuits for microbial biocontainment strategies.
期刊介绍:
Current Opinion in Systems Biology is a new systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of Systems Biology. It publishes polished, concise and timely systematic reviews and opinion articles. In addition to describing recent trends, the authors are encouraged to give their subjective opinion on the topics discussed. As this is such a broad discipline, we have determined themed sections each of which is reviewed once a year. The following areas will be covered by Current Opinion in Systems Biology: -Genomics and Epigenomics -Gene Regulation -Metabolic Networks -Cancer and Systemic Diseases -Mathematical Modelling -Big Data Acquisition and Analysis -Systems Pharmacology and Physiology -Synthetic Biology -Stem Cells, Development, and Differentiation -Systems Biology of Mold Organisms -Systems Immunology and Host-Pathogen Interaction -Systems Ecology and Evolution