Children's emergent mechanistic reasoning in chemistry: a case study about early primary students’ reasoning about the phenomenon of thermal expansion of air

IF 2.6 2区 教育学 Q1 EDUCATION & EDUCATIONAL RESEARCH
Astrid Berg and Magnus Hultén
{"title":"Children's emergent mechanistic reasoning in chemistry: a case study about early primary students’ reasoning about the phenomenon of thermal expansion of air","authors":"Astrid Berg and Magnus Hultén","doi":"10.1039/D3RP00169E","DOIUrl":null,"url":null,"abstract":"<p >The importance of introducing students to mechanistic reasoning (MR) early in their schooling is emphasised in research. The goal of this case study was to contribute with knowledge on how early primary students’ (9–10 year-olds) MR in chemistry is expressed and developed in a classroom practice framed by model-based inquiry. The study focuses on the first lesson in a sequence of six that was developed as part of a design study. The teaching was designed to ensure student agency and create conditions for the students to develop, test, and evaluate simple particle models in interaction with observations cooperatively and under teacher guidance. During the lesson, students were encouraged to express their tentative explanatory models in drawing and writing, and to act as molecules to dramatize the expansion of air. A mechanistic reasoning framework based on the characterisation of system components (entities, properties, activities, organisation) was developed and used to analyse children's mechanistic reasoning. The framework included multimodal analysis of communication (speech, gestures, writing, drawing, bodily motion) and evaluation of student reasoning based on <em>e.g.</em>, the presence of gaps in terms of explanatory black boxes or missing pieces. The results show that: (1) In model-based inquiry, young children can navigate across different representational levels in their reasoning and engage in MR; (2) children's black-boxing can be seen as an indication of epistemic work in the process of model-based inquiry; and (3) asking students to engage in multiple modes of representations support the development of student MR in model-based inquiry.</p>","PeriodicalId":69,"journal":{"name":"Chemistry Education Research and Practice","volume":" 1","pages":" 92-114"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/rp/d3rp00169e?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry Education Research and Practice","FirstCategoryId":"95","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/rp/d3rp00169e","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

The importance of introducing students to mechanistic reasoning (MR) early in their schooling is emphasised in research. The goal of this case study was to contribute with knowledge on how early primary students’ (9–10 year-olds) MR in chemistry is expressed and developed in a classroom practice framed by model-based inquiry. The study focuses on the first lesson in a sequence of six that was developed as part of a design study. The teaching was designed to ensure student agency and create conditions for the students to develop, test, and evaluate simple particle models in interaction with observations cooperatively and under teacher guidance. During the lesson, students were encouraged to express their tentative explanatory models in drawing and writing, and to act as molecules to dramatize the expansion of air. A mechanistic reasoning framework based on the characterisation of system components (entities, properties, activities, organisation) was developed and used to analyse children's mechanistic reasoning. The framework included multimodal analysis of communication (speech, gestures, writing, drawing, bodily motion) and evaluation of student reasoning based on e.g., the presence of gaps in terms of explanatory black boxes or missing pieces. The results show that: (1) In model-based inquiry, young children can navigate across different representational levels in their reasoning and engage in MR; (2) children's black-boxing can be seen as an indication of epistemic work in the process of model-based inquiry; and (3) asking students to engage in multiple modes of representations support the development of student MR in model-based inquiry.

儿童在化学中的初步机械推理:关于低年级小学生推理空气热膨胀现象的案例研究
研究强调了在学校教育早期向学生介绍机械推理(MR)的重要性。本案例研究的目的是了解在以模型探究为框架的课堂教学实践中,低年级小学生(9-10 岁)的化学机械推理是如何表现和发展的。研究的重点是作为设计研究一部分而开发的六个序列中的第一课。教学设计旨在确保学生的主体地位,并为学生创造条件,让他们在教师的指导下,在与观察结果的互动中合作开发、测试和评估简单的粒子模型。在教学过程中,我们鼓励学生用绘画和写作的方式来表达他们的初步解释模型,并让他们扮演分子来演示空气的膨胀。基于系统组成部分(实体、属性、活动、组织)的特征,我们开发了一个机械推理框架,用于分析儿童的机械推理。该框架包括对交流(语言、手势、书写、绘画、身体动作)的多模态分析,以及对学生推理的评估,例如,是否存在解释性黑箱或缺失部分。结果表明(1) 在基于模型的探究中,幼儿可以在推理中跨越不同的表征层次,并参与 "多重关系";(2) 幼儿的 "黑箱 "可以被视为基于模型的探究过程中认识论工作的一种表现;(3) 要求学生参与多种表征模式有助于学生在基于模型的探究中发展 "多重关系"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
26.70%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal for teachers, researchers and other practitioners in chemistry education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信