{"title":"Accelerated solutions of convection-dominated partial differential equations using implicit feature tracking and empirical quadrature","authors":"Marzieh Alireza Mirhoseini, Matthew J. Zahr","doi":"10.1002/fld.5234","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This work introduces an empirical quadrature-based hyperreduction procedure and greedy training algorithm to effectively reduce the computational cost of solving convection-dominated problems with limited training. The proposed approach circumvents the slowly decaying <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math>-width limitation of linear model reduction techniques applied to convection-dominated problems by using a nonlinear approximation manifold systematically defined by composing a low-dimensional affine space with bijections of the underlying domain. The reduced-order model is defined as the solution of a residual minimization problem over the nonlinear manifold. An online-efficient method is obtained by using empirical quadrature to approximate the optimality system such that it can be solved with mesh-independent operations. The proposed reduced-order model is trained using a greedy procedure to systematically sample the parameter domain. The effectiveness of the proposed approach is demonstrated on two shock-dominated computational fluid dynamics benchmarks.</p>\n </div>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 1","pages":"102-124"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5234","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
This work introduces an empirical quadrature-based hyperreduction procedure and greedy training algorithm to effectively reduce the computational cost of solving convection-dominated problems with limited training. The proposed approach circumvents the slowly decaying -width limitation of linear model reduction techniques applied to convection-dominated problems by using a nonlinear approximation manifold systematically defined by composing a low-dimensional affine space with bijections of the underlying domain. The reduced-order model is defined as the solution of a residual minimization problem over the nonlinear manifold. An online-efficient method is obtained by using empirical quadrature to approximate the optimality system such that it can be solved with mesh-independent operations. The proposed reduced-order model is trained using a greedy procedure to systematically sample the parameter domain. The effectiveness of the proposed approach is demonstrated on two shock-dominated computational fluid dynamics benchmarks.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.