High-Frequency Parametric Study of Electroplated Conductive Filaments in 3D Printed Microwave Topologies

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
Rolando Salazar, Dreidy Vasquez, Gabriel Hermosilla, Eva Rajo-Iglesias, Francisco Pizarro
{"title":"High-Frequency Parametric Study of Electroplated Conductive Filaments in 3D Printed Microwave Topologies","authors":"Rolando Salazar, Dreidy Vasquez, Gabriel Hermosilla, Eva Rajo-Iglesias, Francisco Pizarro","doi":"10.1089/3dp.2023.0074","DOIUrl":null,"url":null,"abstract":"This article presents a high-frequency characterization from 1 up to 10 GHz of electroplated conductive filaments in 3D printed microwave topologies. This study implements different microstrip lines and antennas to compare their performance as-is and with the electroplating process. The results for the microstrip lines show a significant decrease in losses for the electroplated devices, even reaching loss levels of pure copper devices. In addition, considerations about the required thickness for the conductor are analyzed by considering the skin depth requirement for nonideal conductors. The results for a patch antenna measurement confirm that the antenna height can be reduced to extremely low levels.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 6","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/3dp.2023.0074","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a high-frequency characterization from 1 up to 10 GHz of electroplated conductive filaments in 3D printed microwave topologies. This study implements different microstrip lines and antennas to compare their performance as-is and with the electroplating process. The results for the microstrip lines show a significant decrease in losses for the electroplated devices, even reaching loss levels of pure copper devices. In addition, considerations about the required thickness for the conductor are analyzed by considering the skin depth requirement for nonideal conductors. The results for a patch antenna measurement confirm that the antenna height can be reduced to extremely low levels.
3D打印微波拓扑中电镀导电丝的高频参数研究
本文介绍了3D打印微波拓扑中电镀导电丝从1到10 GHz的高频特性。本研究实现了不同的微带线和天线,比较了其与电镀工艺的性能。微带线的结果表明,电镀器件的损耗显著降低,甚至达到纯铜器件的损耗水平。此外,通过考虑非理想导体的趋肤深度要求,分析了导体所需厚度的考虑因素。贴片天线测量的结果证实,天线高度可以降低到极低的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信