A Mixed Finite Element Approximation for Time-Dependent Navier–Stokes Equations with a General Boundary Condition

IF 2.2 3区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Symmetry-Basel Pub Date : 2023-11-08 DOI:10.3390/sym15112031
Omar El Moutea, Nadia Nakbi, Abdeslam El Akkad, Ahmed Elkhalfi, Lahcen El Ouadefli, Sorin Vlase, Maria Luminita Scutaru
{"title":"A Mixed Finite Element Approximation for Time-Dependent Navier–Stokes Equations with a General Boundary Condition","authors":"Omar El Moutea, Nadia Nakbi, Abdeslam El Akkad, Ahmed Elkhalfi, Lahcen El Ouadefli, Sorin Vlase, Maria Luminita Scutaru","doi":"10.3390/sym15112031","DOIUrl":null,"url":null,"abstract":"In this paper, we present a numerical scheme for addressing the unsteady asymmetric flows governed by the incompressible Navier–Stokes equations under a general boundary condition. We utilized the Finite Element Method (FEM) for spatial discretization and the fully implicit Euler scheme for time discretization. In addition to the theoretical analysis of the error in our numerical scheme, we introduced two types of a posteriori error indicators: one for time discretization and another for spatial discretization, aimed at effectively controlling the error. We established the equivalence between these estimators and the actual error. Furthermore, we conducted numerical simulations in two dimensions to assess the accuracy and effectiveness of our scheme.","PeriodicalId":48874,"journal":{"name":"Symmetry-Basel","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry-Basel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/sym15112031","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a numerical scheme for addressing the unsteady asymmetric flows governed by the incompressible Navier–Stokes equations under a general boundary condition. We utilized the Finite Element Method (FEM) for spatial discretization and the fully implicit Euler scheme for time discretization. In addition to the theoretical analysis of the error in our numerical scheme, we introduced two types of a posteriori error indicators: one for time discretization and another for spatial discretization, aimed at effectively controlling the error. We established the equivalence between these estimators and the actual error. Furthermore, we conducted numerical simulations in two dimensions to assess the accuracy and effectiveness of our scheme.
具有一般边界条件时相关Navier-Stokes方程的混合有限元逼近
本文给出了在一般边界条件下求解不可压缩Navier-Stokes方程控制的非定常非对称流的数值格式。采用有限元法进行空间离散,采用全隐式欧拉格式进行时间离散。除了对数值方案中的误差进行理论分析外,我们还引入了时间离散和空间离散两种后验误差指标,目的是有效地控制误差。我们建立了这些估计量与实际误差之间的等价关系。此外,我们在两个维度上进行了数值模拟,以评估我们的方案的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Symmetry-Basel
Symmetry-Basel MULTIDISCIPLINARY SCIENCES-
CiteScore
5.40
自引率
11.10%
发文量
2276
审稿时长
14.88 days
期刊介绍: Symmetry (ISSN 2073-8994), an international and interdisciplinary scientific journal, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided, so that results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信