Photo and spectral fluorescence analysis of the spinal cord injury area in animal models

Q3 Medicine
A. M. Udeneev, N. A. Kalyagina, V. F. Reps, V. V. Kozlova, L. A. Pigunova, D. I. Pozdnyakov, A. S. Skobeltsin, V. B. Loschenov
{"title":"Photo and spectral fluorescence analysis of the spinal cord injury area in animal models","authors":"A. M. Udeneev, N. A. Kalyagina, V. F. Reps, V. V. Kozlova, L. A. Pigunova, D. I. Pozdnyakov, A. S. Skobeltsin, V. B. Loschenov","doi":"10.24931/2413-9432-2023-12-3-16-20","DOIUrl":null,"url":null,"abstract":"The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of contusions were modeled: pneumo-contusion and contusion by a falling load. Methylene blue and indocyanine green were used as photosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.","PeriodicalId":37713,"journal":{"name":"Biomedical Photonics","volume":"44 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24931/2413-9432-2023-12-3-16-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of the work is to follow the dynamics of changes in fluorescent signals in the near-surface layers of tissue of injured areas of the back of laboratory animals, which will allow, by indirect evidence, to evaluate the information content of fluorescence diagnosis for subsequent possible diagnostic monitoring of photodynamic therapy of the spinal cord. The model animals were Wistar rats. Two types of contusions were modeled: pneumo-contusion and contusion by a falling load. Methylene blue and indocyanine green were used as photosensitizers. Fluorescence measurements were carried out by imaging and spectrometric methods. A stroboscopic fluorescence imager with an excitation wavelength of 630 nm was used to acquire fluorescence images. The LESA-01-BIOSPEC spectrometer with a He-Ne laser excitation allowed to obtain spectra. It was shown that both methods make it possible to estimate the fluorescence value of methylene blue and indocyanine green in the tissues under study. Moreover, the photographic method also allows to obtain the spatial distribution of fluorescence. The general trend found in the data is a more intense and uniform fluorescence of the dorsal region of rats with methylene blue and a less intense, but more contrasting distribution of indocyanine green. The presented methods are non-invasive, which makes them attractive for diagnostic use. However, due to the shallow depth of signal reception, the condition of the spine can be determined only indirectly, by the condition of the near-surface layers of tissue that accumulate the photosensitizer.
动物模型脊髓损伤区域的光谱荧光分析
这项工作的目的是跟踪实验动物背部受伤区域近表层组织荧光信号变化的动态,这将允许通过间接证据来评估荧光诊断的信息内容,以便后续可能的脊髓光动力治疗诊断监测。模型动物为Wistar大鼠。模拟了两种类型的挫伤:气性挫伤和下落载荷挫伤。以亚甲基蓝和吲哚菁绿作为光敏剂。荧光测量通过成像和光谱法进行。利用激发波长为630 nm的频闪荧光成像仪获取荧光图像。LESA-01-BIOSPEC光谱仪与He-Ne激光激发允许获得光谱。结果表明,这两种方法都可以估计所研究组织中亚甲基蓝和吲哚菁绿的荧光值。此外,照相法还可以获得荧光的空间分布。在数据中发现的总体趋势是亚甲基蓝大鼠背部区域的荧光更强烈和均匀,而吲哚菁绿的荧光不那么强烈,但对比更明显。所提出的方法是非侵入性的,这使得它们对诊断应用具有吸引力。然而,由于信号接收深度较浅,脊柱的状况只能通过积累光敏剂的近表层组织的状况间接确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedical Photonics
Biomedical Photonics Medicine-Surgery
CiteScore
1.80
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: The main goal of the journal – to promote the development of Russian biomedical photonics and implementation of its advances into medical practice. The primary objectives: - Presentation of up-to-date results of scientific and in research and scientific and practical (clinical and experimental) activity in the field of biomedical photonics. - Development of united Russian media for integration of knowledge and experience of scientists and practitioners in this field. - Distribution of best practices in laser medicine to regions. - Keeping the clinicians informed about new methods and devices for laser medicine - Approval of investigations of Ph.D candidates and applicants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信