{"title":"Efficient enrichment and selective recovery of rare earths from sulfate leachate of ion-adsorption type rare earth ore by extraction with HPOAc","authors":"","doi":"10.1016/j.jre.2023.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient enrichment and separation of rare earth elements (REEs) from sulfate leachates of ion-adsorption type rare earth ore (IATREO) is still a challenge. This work presents a novel extractant 2-(bis((2-ethylhexyl)oxy)phosphoryl)-2-hydroxyacetic acid (HPOAc) for the selective extraction and efficient enrichment of REEs from sulfate leachates of IATREO. HPOAc exhibits higher extraction ability for all fifteen REEs(III) than naphthenic acid (NA) at pH<sub>ini</sub> = 1.56. Furthermore, it has no drawbacks of di-(2-ethylhexyl) phosphoric acid (P204) and 2-ethylhexyl phosphoric acid mono-2-ethylhexylester (P507) such as weak extraction ability towards light REEs(III) and high stripping acidity for heavy REEs(III). It has better separation performance for metal ion impurities than P204 and P507, especially for the typical impurity Al(III). Furthermore, the HPOAc system has better phase separation behavior and extraction phenomena. A simulated operation with two-stage counter-current extraction and single-stage stripping of REEs was carried out using unsaponified HPOAc. The recovery of REEs reaches 98.7%. The concentration of REEs increases from 0.44 to 130.35 g/L, indicating a nearly 300-fold increase. Furthermore, the content of REEs increases from 77.8 wt% to 97.6 wt%. So HPOAc has the potential to selectively recover REEs from sulfate leachates of IATREO.</div></div>","PeriodicalId":16940,"journal":{"name":"Journal of Rare Earths","volume":"42 11","pages":"Pages 2156-2165"},"PeriodicalIF":7.2000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rare Earths","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100207212300296X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The efficient enrichment and separation of rare earth elements (REEs) from sulfate leachates of ion-adsorption type rare earth ore (IATREO) is still a challenge. This work presents a novel extractant 2-(bis((2-ethylhexyl)oxy)phosphoryl)-2-hydroxyacetic acid (HPOAc) for the selective extraction and efficient enrichment of REEs from sulfate leachates of IATREO. HPOAc exhibits higher extraction ability for all fifteen REEs(III) than naphthenic acid (NA) at pHini = 1.56. Furthermore, it has no drawbacks of di-(2-ethylhexyl) phosphoric acid (P204) and 2-ethylhexyl phosphoric acid mono-2-ethylhexylester (P507) such as weak extraction ability towards light REEs(III) and high stripping acidity for heavy REEs(III). It has better separation performance for metal ion impurities than P204 and P507, especially for the typical impurity Al(III). Furthermore, the HPOAc system has better phase separation behavior and extraction phenomena. A simulated operation with two-stage counter-current extraction and single-stage stripping of REEs was carried out using unsaponified HPOAc. The recovery of REEs reaches 98.7%. The concentration of REEs increases from 0.44 to 130.35 g/L, indicating a nearly 300-fold increase. Furthermore, the content of REEs increases from 77.8 wt% to 97.6 wt%. So HPOAc has the potential to selectively recover REEs from sulfate leachates of IATREO.
期刊介绍:
The Journal of Rare Earths reports studies on the 17 rare earth elements. It is a unique English-language learned journal that publishes works on various aspects of basic theory and applied science in the field of rare earths (RE). The journal accepts original high-quality original research papers and review articles with inventive content, and complete experimental data. It represents high academic standards and new progress in the RE field. Due to the advantage of abundant RE resources of China, the research on RE develops very actively, and papers on the latest progress in this field emerge every year. It is not only an important resource in which technicians publish and obtain their latest research results on RE, but also an important way of reflecting the updated progress in RE research field.
The Journal of Rare Earths covers all research and application of RE rare earths including spectroscopy, luminescence and phosphors, rare earth catalysis, magnetism and magnetic materials, advanced rare earth materials, RE chemistry & hydrometallurgy, RE metallography & pyrometallurgy, RE new materials, RE solid state physics & solid state chemistry, rare earth applications, RE analysis & test, RE geology & ore dressing, etc.