A novel approach to interface high-Q Fabry–Pérot resonators with photonic circuits

IF 5.4 1区 物理与天体物理 Q1 OPTICS
APL Photonics Pub Date : 2023-11-01 DOI:10.1063/5.0174384
Haotian Cheng, Naijun Jin, Zhaowei Dai, Chao Xiang, Joel Guo, Yishu Zhou, Scott A. Diddams, Franklyn Quinlan, John Bowers, Owen Miller, Peter Rakich
{"title":"A novel approach to interface high-Q Fabry–Pérot resonators with photonic circuits","authors":"Haotian Cheng, Naijun Jin, Zhaowei Dai, Chao Xiang, Joel Guo, Yishu Zhou, Scott A. Diddams, Franklyn Quinlan, John Bowers, Owen Miller, Peter Rakich","doi":"10.1063/5.0174384","DOIUrl":null,"url":null,"abstract":"The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"17 4","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0174384","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The unique benefits of Fabry–Pérot resonators as frequency-stable reference cavities and as an efficient interface between atoms and photons make them an indispensable resource for emerging photonic technologies. To bring these performance benefits to next-generation communications, computation, and time-keeping systems, it will be necessary to develop strategies to integrate compact Fabry–Pérot resonators with photonic integrated circuits. In this paper, we demonstrate a novel reflection cancellation circuit that utilizes a numerically optimized multi-port polarization-splitting grating coupler to efficiently interface high-finesse Fabry–Pérot resonators with a silicon photonic circuit. This circuit interface produces a spatial separation of the incident and reflected waves, as required for on-chip Pound–Drever–Hall frequency locking, while also suppressing unwanted back reflections from the Fabry–Pérot resonator. Using inverse design principles, we design and fabricate a polarization-splitting grating coupler that achieves 55% coupling efficiency. This design realizes an insertion loss of 5.8 dB for the circuit interface and more than 9 dB of back reflection suppression, and we demonstrate the versatility of this system by using it to interface several reflective off-chip devices.
一种将高q法布里-帕姆罗谐振器与光子电路连接的新方法
作为频率稳定的参考腔和原子与光子之间的有效界面,法布里-帕姆罗谐振器的独特优势使其成为新兴光子技术不可或缺的资源。为了将这些性能优势带到下一代通信,计算和计时系统中,有必要开发将紧凑型法布里-帕姆罗谐振器与光子集成电路集成在一起的策略。在本文中,我们展示了一种新的反射抵消电路,该电路利用数值优化的多端口偏振分裂光栅耦合器有效地将高精细法布里-帕姆罗谐振器与硅光子电路相连接。该电路接口产生入射波和反射波的空间分离,这是片上Pound-Drever-Hall频率锁定所需要的,同时也抑制了来自fabry - p谐振器的不必要的反向反射。利用逆设计原理,设计制作了一种耦合效率达到55%的偏振分裂光栅耦合器。本设计实现了电路接口的插入损耗为5.8 dB,反向反射抑制大于9 dB,并通过将其用于多个反射片外器件的接口,证明了该系统的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信