Hydrodynamic regime and cold plasmas hit by short laser pulses

IF 1.1 4区 数学 Q1 MATHEMATICS
Gaetano Fiore, Monica De Angelis, Renato Fedele, Gabriele Guerriero, Dušan Jovanović
{"title":"Hydrodynamic regime and cold plasmas hit by short laser pulses","authors":"Gaetano Fiore, Monica De Angelis, Renato Fedele, Gabriele Guerriero, Dušan Jovanović","doi":"10.1007/s11587-023-00821-w","DOIUrl":null,"url":null,"abstract":"We briefly report and elaborate on some conditions allowing a hydrodynamic description of the impact of a very short and arbitrarily intense laser pulse onto a cold plasma, as well as the localization of the first wave-breaking due to the plasma inhomogeneity. We use a recently developed fully relativistic plane model whereby we reduce the system of the Lorentz-Maxwell and continuity PDEs into a 1-parameter family of decoupled systems of non-autonomous Hamilton equations in dimension 1, with the light-like coordinate $\\xi=ct\\!-\\!z$ replacing time $t$ as an independent variable. Apriori estimates on the Jacobian $\\hat J$ of the change from Lagrangian to Eulerian coordinates in terms of the input data (initial density and pulse profile) are obtained applying Liapunov direct method to an associated family of pairs of ODEs; wave-breaking is pinpointed by the inequality $\\hat J\\le 0$. These results may help in drastically simplifying the study of extreme acceleration mechanisms of electrons, which have very important applications.","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"31 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11587-023-00821-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We briefly report and elaborate on some conditions allowing a hydrodynamic description of the impact of a very short and arbitrarily intense laser pulse onto a cold plasma, as well as the localization of the first wave-breaking due to the plasma inhomogeneity. We use a recently developed fully relativistic plane model whereby we reduce the system of the Lorentz-Maxwell and continuity PDEs into a 1-parameter family of decoupled systems of non-autonomous Hamilton equations in dimension 1, with the light-like coordinate $\xi=ct\!-\!z$ replacing time $t$ as an independent variable. Apriori estimates on the Jacobian $\hat J$ of the change from Lagrangian to Eulerian coordinates in terms of the input data (initial density and pulse profile) are obtained applying Liapunov direct method to an associated family of pairs of ODEs; wave-breaking is pinpointed by the inequality $\hat J\le 0$. These results may help in drastically simplifying the study of extreme acceleration mechanisms of electrons, which have very important applications.

Abstract Image

短激光脉冲冲击下的流体动力学和冷等离子体
我们简要地报告并详细说明了一些条件,这些条件允许对极短且任意强度的激光脉冲对冷等离子体的影响进行流体动力学描述,以及由于等离子体不均匀性而导致的第一次破波的定位。我们使用最近开发的完全相对论平面模型,在该模型中,我们将洛伦兹-麦克斯韦方程组和连续性偏微分方程简化为1维非自治汉密尔顿方程的1参数解耦系统族,用类光坐标$\xi=ct\!-\!z$代替时间$t$作为自变量。应用Liapunov直接法对相关的ode对族进行了先验估计,得到了输入数据(初始密度和脉冲轮廓)从拉格朗日坐标到欧拉坐标变化的雅可比矩阵$\hat J$的先验估计;破浪是由不等式$\hat J\le 0$确定的。这些结果可能有助于大大简化电子极端加速机制的研究,这具有非常重要的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信