{"title":"Complete resolution of the circulant nut graph order–degree existence problem","authors":"Ivan Damnjanović","doi":"10.26493/1855-3974.3009.6df","DOIUrl":null,"url":null,"abstract":"A circulant nut graph is a non-trivial simple graph such that its adjacency matrix is a circulant matrix whose null space is spanned by a single vector without zero elements. Regarding these graphs, the order–degree existence problem can be thought of as the mathematical problem of determining all the possible pairs (n, d) for which there exists a d-regular circulant nut graph of order n. This problem was initiated by Bašić et al. and the first major results were obtained by Damnjanović and Stevanović, who proved that for each odd t ≥ 3 such that t ≢10 1 and t ≢18 15, there exists a 4t-regular circulant nut graph of order n for each even n ≥ 4t + 4. Afterwards, Damnjanović improved these results by showing that there necessarily exists a 4t-regular circulant nut graph of order n whenever t is odd, n is even, and n ≥ 4t + 4 holds, or whenever t is even, n is such that n ≡4 2, and n ≥ 4t + 6 holds. In this paper, we extend the aforementioned results by completely resolving the circulant nut graph order–degree existence problem. In other words, we fully determine all the possible pairs (n, d) for which there exists a d-regular circulant nut graph of order n.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26493/1855-3974.3009.6df","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
A circulant nut graph is a non-trivial simple graph such that its adjacency matrix is a circulant matrix whose null space is spanned by a single vector without zero elements. Regarding these graphs, the order–degree existence problem can be thought of as the mathematical problem of determining all the possible pairs (n, d) for which there exists a d-regular circulant nut graph of order n. This problem was initiated by Bašić et al. and the first major results were obtained by Damnjanović and Stevanović, who proved that for each odd t ≥ 3 such that t ≢10 1 and t ≢18 15, there exists a 4t-regular circulant nut graph of order n for each even n ≥ 4t + 4. Afterwards, Damnjanović improved these results by showing that there necessarily exists a 4t-regular circulant nut graph of order n whenever t is odd, n is even, and n ≥ 4t + 4 holds, or whenever t is even, n is such that n ≡4 2, and n ≥ 4t + 6 holds. In this paper, we extend the aforementioned results by completely resolving the circulant nut graph order–degree existence problem. In other words, we fully determine all the possible pairs (n, d) for which there exists a d-regular circulant nut graph of order n.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.