Too Many Bots: A Lesson for Online Quantitative Data Collection

IF 0.7 Q4 HOSPITALITY, LEISURE, SPORT & TOURISM
Keri A. Schwab, Ben Sherman, Marni Goldenberg
{"title":"Too Many Bots: A Lesson for Online Quantitative Data Collection","authors":"Keri A. Schwab, Ben Sherman, Marni Goldenberg","doi":"10.18666/jpra-2023-12011","DOIUrl":null,"url":null,"abstract":"“Bots,” computer software capable of taking surveys for an operator, pose a serious threat to the integrity of research that relies on publicly available online surveys. This paper addresses the issue of bot responses to online surveys and suggests several strategies for reducing and addressing these fraudulent responses. To combat this threat, researchers should employ specific methods for building, distributing, and processing surveys that deter and eliminate bot responses from the dataset. Methods for anti-bot survey design include building bot detection software into the survey, creating trap questions, and writing questions that require specific free-form answers. Survey distribution methods that avoid or hide monetary incentives, use a password-protected link, or employ some other form of population targeting will also receive fewer bot responses. Finally, data should be screened for bots after collection using a set of reliable criteria to identify and remove bot responses.","PeriodicalId":46684,"journal":{"name":"Journal of Park and Recreation Administration","volume":"45 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Park and Recreation Administration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18666/jpra-2023-12011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HOSPITALITY, LEISURE, SPORT & TOURISM","Score":null,"Total":0}
引用次数: 0

Abstract

“Bots,” computer software capable of taking surveys for an operator, pose a serious threat to the integrity of research that relies on publicly available online surveys. This paper addresses the issue of bot responses to online surveys and suggests several strategies for reducing and addressing these fraudulent responses. To combat this threat, researchers should employ specific methods for building, distributing, and processing surveys that deter and eliminate bot responses from the dataset. Methods for anti-bot survey design include building bot detection software into the survey, creating trap questions, and writing questions that require specific free-form answers. Survey distribution methods that avoid or hide monetary incentives, use a password-protected link, or employ some other form of population targeting will also receive fewer bot responses. Finally, data should be screened for bots after collection using a set of reliable criteria to identify and remove bot responses.
太多的机器人:在线定量数据收集的教训
“机器人”是一种能够为操作员进行调查的计算机软件,它对依赖于公开在线调查的研究的完整性构成了严重威胁。本文解决了机器人对在线调查的响应问题,并提出了减少和解决这些欺诈性响应的几种策略。为了对抗这种威胁,研究人员应该采用特定的方法来构建、分发和处理调查,以阻止和消除数据集中的机器人响应。反机器人调查设计的方法包括在调查中构建机器人检测软件,创建陷阱问题,以及编写需要特定自由形式答案的问题。避免或隐藏金钱奖励、使用密码保护链接或采用其他形式的人口定位的调查分发方法也会收到更少的机器人回复。最后,在收集数据后,应该使用一组可靠的标准来识别和删除机器人响应,以筛选机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Park and Recreation Administration
Journal of Park and Recreation Administration HOSPITALITY, LEISURE, SPORT & TOURISM-
CiteScore
1.90
自引率
23.10%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信