Identification of Surgical Instruments Using a Low Frequency Magnetic Field

Q4 Engineering
Thomas Wittenberg, Ibrahim Ibrahim, Tobias Draeger
{"title":"Identification of Surgical Instruments Using a Low Frequency Magnetic Field","authors":"Thomas Wittenberg, Ibrahim Ibrahim, Tobias Draeger","doi":"10.1515/cdbme-2023-1015","DOIUrl":null,"url":null,"abstract":"Abstract Background: As part of a open surgical intervention, it is desirable to identify, track and count the surgical instruments used, in order to document and potentially optimize the process. In the past, various technologies have been proposed to this end, as e.g. RFIDs attached to or included in the instruments, contact-less identification by image analysis or (bar-, QR-) codes, or counting by human resources, but all of them having their individual drawbacks. Objective: We present and evaluate a new method to identify metallic-conductive surgical instruments using Low Frequency (LF) magnetic fields. Method: The investigated LF magnetic field approach is based on the IndLoc system developed by the Fraunhofer IIS - originally for metallic asset identification within the field of supply chain management - and is applied on small collection of 13 typical surgical tools (four scissors, two needle holders, four tweezers, two retractors, a bone curette) for open surgery. Results: 9 out of the 13 instruments can be correctly identified, two pairs (2 short and 2 medium tweezers) are too self-similar and could not discriminated correctly from each other. Conclusion: These initial experiments show that an LF-based identification of metallic surgical tools is feasible, but the system needs to be modified (with more and smaller coils) to increase the geometrical resolution to better distinguish between self-similar and potentially more objects.","PeriodicalId":10739,"journal":{"name":"Current Directions in Biomedical Engineering","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Directions in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cdbme-2023-1015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Background: As part of a open surgical intervention, it is desirable to identify, track and count the surgical instruments used, in order to document and potentially optimize the process. In the past, various technologies have been proposed to this end, as e.g. RFIDs attached to or included in the instruments, contact-less identification by image analysis or (bar-, QR-) codes, or counting by human resources, but all of them having their individual drawbacks. Objective: We present and evaluate a new method to identify metallic-conductive surgical instruments using Low Frequency (LF) magnetic fields. Method: The investigated LF magnetic field approach is based on the IndLoc system developed by the Fraunhofer IIS - originally for metallic asset identification within the field of supply chain management - and is applied on small collection of 13 typical surgical tools (four scissors, two needle holders, four tweezers, two retractors, a bone curette) for open surgery. Results: 9 out of the 13 instruments can be correctly identified, two pairs (2 short and 2 medium tweezers) are too self-similar and could not discriminated correctly from each other. Conclusion: These initial experiments show that an LF-based identification of metallic surgical tools is feasible, but the system needs to be modified (with more and smaller coils) to increase the geometrical resolution to better distinguish between self-similar and potentially more objects.
利用低频磁场识别手术器械
背景:作为开放式手术干预的一部分,需要识别、跟踪和计数所使用的手术器械,以便记录和潜在地优化该过程。在过去,为此目的提出了各种技术,例如附加在仪器上或包含在仪器中的rfid,通过图像分析或(条形码,QR码)进行非接触式识别,或由人力资源进行计数,但所有这些技术都有各自的缺点。目的:提出并评价一种利用低频磁场识别金属导电手术器械的新方法。方法:所研究的低频磁场方法基于Fraunhofer IIS开发的IndLoc系统(最初用于供应链管理领域的金属资产识别),并应用于开放手术的13种典型手术工具(4把剪刀、2把针架、4把镊子、2把牵开器、1把骨镊)的一小部分。结果:13个镊子中有9个可以正确识别,2对(2对短镊子和2对中镊子)自相似度过高,无法正确区分。结论:这些初步实验表明,基于lf的金属手术工具识别是可行的,但系统需要修改(使用更多和更小的线圈)以提高几何分辨率,以更好地区分自相似和潜在的更多物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Directions in Biomedical Engineering
Current Directions in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
0.90
自引率
0.00%
发文量
239
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信