Lighting up the LHC with Dark Matter

IF 5 1区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS
Sebastian Baum, Marcela Carena, Tong Ou, Duncan Rocha, Nausheen R. Shah, Carlos E. M. Wagner
{"title":"Lighting up the LHC with Dark Matter","authors":"Sebastian Baum, Marcela Carena, Tong Ou, Duncan Rocha, Nausheen R. Shah, Carlos E. M. Wagner","doi":"10.1007/jhep11(2023)037","DOIUrl":null,"url":null,"abstract":"A bstract We show that simultaneously explaining dark matter and the observed value of the muon’s magnetic dipole moment may lead to yet unexplored photon signals at the LHC. We consider the Minimal Supersymmetric Standard Model with electroweakino masses in the few-to-several hundred GeV range, and opposite sign of the Bino mass parameter with respect to both the Higgsino and Wino mass parameters. In such region of parameter space, the spin-independent elastic scattering cross section of a Bino-like dark matter candidate in direct detection experiment is suppressed by cancellations between different amplitudes, and the observed dark matter relic density can be realized via Bino-Wino co-annihilation. Moreover, the observed value of the muon’s magnetic dipole moment can be explained by Bino and Wino loop contributions. Interestingly, “radiative” decays of Wino-like neutralinos into the lightest neutralino and a photon are enhanced, whereas decays into leptons are suppressed. While these decay patterns weaken the reach of multi-lepton searches at the LHC, the radiative decay opens a new window for probing dark matter at the LHC through the exploration of parameter space regions beyond those currently accessible. To complement the current electroweakino searches, we propose searching for a single (soft) photon plus missing transverse energy, accompanied by a hard initial state radiation jet.","PeriodicalId":48906,"journal":{"name":"Journal of High Energy Physics","volume":"40 1","pages":"0"},"PeriodicalIF":5.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/jhep11(2023)037","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

A bstract We show that simultaneously explaining dark matter and the observed value of the muon’s magnetic dipole moment may lead to yet unexplored photon signals at the LHC. We consider the Minimal Supersymmetric Standard Model with electroweakino masses in the few-to-several hundred GeV range, and opposite sign of the Bino mass parameter with respect to both the Higgsino and Wino mass parameters. In such region of parameter space, the spin-independent elastic scattering cross section of a Bino-like dark matter candidate in direct detection experiment is suppressed by cancellations between different amplitudes, and the observed dark matter relic density can be realized via Bino-Wino co-annihilation. Moreover, the observed value of the muon’s magnetic dipole moment can be explained by Bino and Wino loop contributions. Interestingly, “radiative” decays of Wino-like neutralinos into the lightest neutralino and a photon are enhanced, whereas decays into leptons are suppressed. While these decay patterns weaken the reach of multi-lepton searches at the LHC, the radiative decay opens a new window for probing dark matter at the LHC through the exploration of parameter space regions beyond those currently accessible. To complement the current electroweakino searches, we propose searching for a single (soft) photon plus missing transverse energy, accompanied by a hard initial state radiation jet.
用暗物质点亮LHC
我们表明,同时解释暗物质和μ子磁偶极矩的观测值可能导致在大型强子对撞机中尚未探索的光子信号。我们考虑最小超对称标准模型,其电弱子质量在几到几百GeV范围内,并且Bino质量参数相对于Higgsino和Wino质量参数的符号相反。在该参数空间区域内,直接探测实验中Bino-like暗物质候选体的自旋无关弹性散射截面被不同振幅之间的抵消所抑制,观测到的暗物质遗迹密度可以通过Bino-Wino共湮灭来实现。此外,μ子磁偶极矩的观测值可以用Bino和Wino环的贡献来解释。有趣的是,类中微子向最轻的中微子和光子的“辐射”衰变被增强,而向轻子的衰变则被抑制。虽然这些衰变模式削弱了LHC的多轻子搜索范围,但辐射衰变通过探索目前可访问的参数空间区域,为LHC探测暗物质打开了一扇新的窗口。为了补充目前的电弱子搜索,我们建议搜索单个(软)光子加上缺失的横向能量,伴随着硬初始态辐射射流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics PHYSICS, PARTICLES & FIELDS-
CiteScore
10.00
自引率
46.30%
发文量
2107
审稿时长
12 weeks
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信