Chao-Ching Chiang, Hsiao-Hsuan Wan, Jian-Sian Li, Fan Ren, Timothy Jinsoo Yoo, Honggyu Kim, S. J. Pearton
{"title":"E-mode AlGaN/GaN HEMTs using p-NiO gates","authors":"Chao-Ching Chiang, Hsiao-Hsuan Wan, Jian-Sian Li, Fan Ren, Timothy Jinsoo Yoo, Honggyu Kim, S. J. Pearton","doi":"10.1116/6.0003119","DOIUrl":null,"url":null,"abstract":"Sputtered p-NiO films were used to suppress gate leakage and produce a positive shift in the gate voltage of AlGaN/GaN high-electron mobility transistors for e-mode operation. A direct comparison with Schottky-gated devices fabricated on the same wafer shows the utility of the NiO in increasing the on-off ratio and shifting the threshold voltage from −0.95 V (Schottky gated) to +0.9 V (NiO gated). The breakdown voltage was 780 V for a 40 μm drain-source separation. The subthreshold swing decreased from 181 mV/dec for Schottky-gated HEMTs to 128 mV/dec on NiO-gated devices. The simple fabrication process without any annealing or passivation steps shows the promise of NiO gates for e-mode AlGaN/GaN HEMT operation.","PeriodicalId":17571,"journal":{"name":"Journal of Vacuum Science and Technology","volume":"24 45","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sputtered p-NiO films were used to suppress gate leakage and produce a positive shift in the gate voltage of AlGaN/GaN high-electron mobility transistors for e-mode operation. A direct comparison with Schottky-gated devices fabricated on the same wafer shows the utility of the NiO in increasing the on-off ratio and shifting the threshold voltage from −0.95 V (Schottky gated) to +0.9 V (NiO gated). The breakdown voltage was 780 V for a 40 μm drain-source separation. The subthreshold swing decreased from 181 mV/dec for Schottky-gated HEMTs to 128 mV/dec on NiO-gated devices. The simple fabrication process without any annealing or passivation steps shows the promise of NiO gates for e-mode AlGaN/GaN HEMT operation.