{"title":"An unsupervised transfer learning approach for rolling bearing fault diagnosis based on dual pseudo-label screening","authors":"Chunran Huo, Weiyang Xu, Quansheng Jiang, Yehu Shen, Qixin Zhu, Qingkui Zhang","doi":"10.1177/14759217231206579","DOIUrl":null,"url":null,"abstract":"Deep transfer learning is an effective method for unsupervised fault diagnosis of rolling bearings. In some works, the pseudo-label of target domain prediction is used to improve the ability of target domain prediction in transfer learning. However, its validity depends on the quality of pseudo-label generated by the network itself, which is easy to cause the misclassification of the samples. Aiming to this, a dual sample screening (DSS) method based on the information of predicted label changes is proposed in the article, and it is applied to the fault diagnosis of rolling bearings with variable working conditions. DSS combines pre-screening and real-time screening and uses the continuous output of prediction label change information in the training process to improve the network training. It owes to eliminating part of the target domain samples with prediction errors in the stage of network training with pseudo-label. The proposed method improves the stability of the pseudo-label involved in the training and alleviates the negative effects caused by the pseudo-label. The experimental results on Paderborn University dataset show that, compare with the deep transfer learning fault diagnosis method based on pseudo-label cross-entropy, the average diagnostic accuracy of the six transfer tasks using DSS is increased by 5.97%, which effectively improves the fault diagnosis accuracy of rolling bearings.","PeriodicalId":51184,"journal":{"name":"Structural Health Monitoring-An International Journal","volume":"45 2","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Health Monitoring-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14759217231206579","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deep transfer learning is an effective method for unsupervised fault diagnosis of rolling bearings. In some works, the pseudo-label of target domain prediction is used to improve the ability of target domain prediction in transfer learning. However, its validity depends on the quality of pseudo-label generated by the network itself, which is easy to cause the misclassification of the samples. Aiming to this, a dual sample screening (DSS) method based on the information of predicted label changes is proposed in the article, and it is applied to the fault diagnosis of rolling bearings with variable working conditions. DSS combines pre-screening and real-time screening and uses the continuous output of prediction label change information in the training process to improve the network training. It owes to eliminating part of the target domain samples with prediction errors in the stage of network training with pseudo-label. The proposed method improves the stability of the pseudo-label involved in the training and alleviates the negative effects caused by the pseudo-label. The experimental results on Paderborn University dataset show that, compare with the deep transfer learning fault diagnosis method based on pseudo-label cross-entropy, the average diagnostic accuracy of the six transfer tasks using DSS is increased by 5.97%, which effectively improves the fault diagnosis accuracy of rolling bearings.
期刊介绍:
Structural Health Monitoring is an international peer reviewed journal that publishes the highest quality original research that contain theoretical, analytical, and experimental investigations that advance the body of knowledge and its application in the discipline of structural health monitoring.