{"title":"Dynamic performance of ultra-high performance fiber-reinforced concrete panel exposed to explosive loading","authors":"Masoud Abedini, Chunwei Zhang","doi":"10.1177/20414196231212511","DOIUrl":null,"url":null,"abstract":"Ultra-high performance fiber reinforced concrete (UHPFRC) is a cement-based composite material mixing with reactive powder and steel fibers. It is characterized by its high strength, high ductility, and high toughness and such characteristics enable its great potential in protective engineering against severe dynamic loads. In the current research, the dynamic performance of the concrete panel made with ultra-high performance fiber subjected to explosive loading was investigated. For this purpose, several concrete panel samples were considered and modeled in ABAQUS finite element software. The accuracy of the numerical model is verified by comparing the numerical simulation results with available testing data. First, the considered panel was modeled with normal concrete then it was modeled with UHPFRC concrete, and the effect of using this type of concrete on the behavior of concrete panels was investigated. After analyzing and examining the models, their behavior such as the degree of vulnerability, more vulnerable points and changes in the locations that occurred in each of the models were obtained and compared. The results demonstrate that the use of UHPFRC significantly improves the blast performance of RC panels by reducing maximum and residual displacements, enhancing damage tolerance, and increasing energy absorption. The results also indicate that the increase in the intensity of explosion has increased the base reaction force in all panels.","PeriodicalId":46272,"journal":{"name":"International Journal of Protective Structures","volume":"26 40","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Protective Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20414196231212511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-high performance fiber reinforced concrete (UHPFRC) is a cement-based composite material mixing with reactive powder and steel fibers. It is characterized by its high strength, high ductility, and high toughness and such characteristics enable its great potential in protective engineering against severe dynamic loads. In the current research, the dynamic performance of the concrete panel made with ultra-high performance fiber subjected to explosive loading was investigated. For this purpose, several concrete panel samples were considered and modeled in ABAQUS finite element software. The accuracy of the numerical model is verified by comparing the numerical simulation results with available testing data. First, the considered panel was modeled with normal concrete then it was modeled with UHPFRC concrete, and the effect of using this type of concrete on the behavior of concrete panels was investigated. After analyzing and examining the models, their behavior such as the degree of vulnerability, more vulnerable points and changes in the locations that occurred in each of the models were obtained and compared. The results demonstrate that the use of UHPFRC significantly improves the blast performance of RC panels by reducing maximum and residual displacements, enhancing damage tolerance, and increasing energy absorption. The results also indicate that the increase in the intensity of explosion has increased the base reaction force in all panels.