A natural pseudometric on homotopy groups of metric spaces

Pub Date : 2023-11-08 DOI:10.1017/s0017089523000393
Jeremy Brazas, Paul Fabel
{"title":"A natural pseudometric on homotopy groups of metric spaces","authors":"Jeremy Brazas, Paul Fabel","doi":"10.1017/s0017089523000393","DOIUrl":null,"url":null,"abstract":"Abstract For a path-connected metric space $(X,d)$ , the $n$ -th homotopy group $\\pi _n(X)$ inherits a natural pseudometric from the $n$ -th iterated loop space with the uniform metric. This pseudometric gives $\\pi _n(X)$ the structure of a topological group, and when $X$ is compact, the induced pseudometric topology is independent of the metric $d$ . In this paper, we study the properties of this pseudometric and how it relates to previously studied structures on $\\pi _n(X)$ . Our main result is that the pseudometric topology agrees with the shape topology on $\\pi _n(X)$ if $X$ is compact and $LC^{n-1}$ or if $X$ is an inverse limit of finite polyhedra with retraction bonding maps.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0017089523000393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract For a path-connected metric space $(X,d)$ , the $n$ -th homotopy group $\pi _n(X)$ inherits a natural pseudometric from the $n$ -th iterated loop space with the uniform metric. This pseudometric gives $\pi _n(X)$ the structure of a topological group, and when $X$ is compact, the induced pseudometric topology is independent of the metric $d$ . In this paper, we study the properties of this pseudometric and how it relates to previously studied structures on $\pi _n(X)$ . Our main result is that the pseudometric topology agrees with the shape topology on $\pi _n(X)$ if $X$ is compact and $LC^{n-1}$ or if $X$ is an inverse limit of finite polyhedra with retraction bonding maps.
分享
查看原文
度量空间的同伦群上的自然伪度量
摘要对于一个连通路径的度量空间$(X,d)$, $n$同伦群$\pi _n(X)$继承了$n$次具有一致度量的迭代循环空间的一个自然伪度量。这个伪度量给出了拓扑群的结构$\pi _n(X)$,当$X$是紧致的,诱导的伪度量拓扑与度量$d$无关。在本文中,我们研究了这个伪度量的性质,以及它与先前研究的$\pi _n(X)$上的结构的关系。我们的主要结果是,如果$X$是紧的$LC^{n-1}$,或者$X$是具有缩回键映射的有限多面体的逆极限,则伪度量拓扑与$\pi _n(X)$上的形状拓扑一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信