Extremal graphs without long paths and large cliques

IF 1 3区 数学 Q1 MATHEMATICS
Gyula O.H. Katona , Chuanqi Xiao
{"title":"Extremal graphs without long paths and large cliques","authors":"Gyula O.H. Katona ,&nbsp;Chuanqi Xiao","doi":"10.1016/j.ejc.2023.103807","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>F</mi></math></span> be a family of graphs. A graph is called <span><math><mi>F</mi></math></span>-free if it does not contain any member of <span><math><mi>F</mi></math></span> as a subgraph. The Turán number of <span><math><mi>F</mi></math></span> is the maximum number of edges in an <span><math><mi>n</mi></math></span>-vertex <span><math><mi>F</mi></math></span>-free graph and is denoted by <span><math><mrow><mo>ex</mo><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></math></span>. The same maximum under the additional condition that the graphs are connected is <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>conn</mi></mrow></msub><mrow><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>F</mi></mrow><mo>)</mo></mrow></mrow></math></span>. Let <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> be the path on <span><math><mi>k</mi></math></span> vertices, <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> be the clique on <span><math><mi>m</mi></math></span> vertices. We determine <span><math><mrow><mo>ex</mo><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mn>2</mn><mi>m</mi><mo>−</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mo>ex</mo></mrow><mrow><mi>conn</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mrow><mo>{</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></mrow><mo>)</mo></mrow></mrow></math></span> if <span><math><mrow><mi>k</mi><mo>&gt;</mo><mi>m</mi></mrow></math></span> for sufficiently large <span><math><mi>n</mi></math></span>.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0195669823001245/pdfft?md5=1271cd195bffe5dd20cfa6c9c7c1cd05&pid=1-s2.0-S0195669823001245-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823001245","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let F be a family of graphs. A graph is called F-free if it does not contain any member of F as a subgraph. The Turán number of F is the maximum number of edges in an n-vertex F-free graph and is denoted by ex(n,F). The same maximum under the additional condition that the graphs are connected is exconn(n,F). Let Pk be the path on k vertices, Km be the clique on m vertices. We determine ex(n,{Pk,Km}) if k>2m1 and exconn(n,{Pk,Km}) if k>m for sufficiently large n.

无长路径和大小块的极值图
设 F 是一个图族。如果一个图的子图中不包含 F 的任何成员,则该图称为无 F 图。F 的图兰数是一个 n 个顶点的无 F 图形中的最大边数,用 ex(n,F) 表示。在图形相连的附加条件下,同样的最大值是 exconn(n,F)。假设 Pk 是 k 个顶点上的路径,Km 是 m 个顶点上的小群。对于足够大的 n,如果 k>2m-1 ,我们将确定 ex(n,{Pk,Km});如果 k>m ,我们将确定 exconn(n,{Pk,Km})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信