Avinash Nayak, Verónica Rodríguez Tribaldos, Jonathan Ajo-Franklin, Brianna Miranda, Chih-Chieh Chien, Robert Mellors, Michelle Robertson, Matthew Brandin, John Rekoske, Todd Wood, Patrick Dobson, Trenton Cladouhos, Nicholas Madera, Eitan Shmagin, Emily Duran, Suzie Duran
{"title":"Nodal and Broadband Seismometer Complement to the Imperial Valley Dark Fiber DAS Array","authors":"Avinash Nayak, Verónica Rodríguez Tribaldos, Jonathan Ajo-Franklin, Brianna Miranda, Chih-Chieh Chien, Robert Mellors, Michelle Robertson, Matthew Brandin, John Rekoske, Todd Wood, Patrick Dobson, Trenton Cladouhos, Nicholas Madera, Eitan Shmagin, Emily Duran, Suzie Duran","doi":"10.1785/0220230081","DOIUrl":null,"url":null,"abstract":"Abstract Distributed acoustic sensing (DAS) technology provides the capability to efficiently acquire dense and continuous seismic data on preexisting, unused fiber-optic cables buried in the ground (dark fiber) that were originally deployed for telecommunication. However, these fiber installations typically use existing “right-of-way corridors” along roadways and railway tracks, leading to piecewise linear or quasi-linear seismic receiver geometries, thereby reducing their utility in seismic studies over a broad areal extent. Short-term and dense arrays of seismometers can be deployed to complement dark fiber DAS arrays, leading to improved seismic receiver coverage over a broader area in the vicinity of the DAS array. This study describes the deployment strategies and procedures, data, and metadata of a contemporaneous and complementary network of three temporary broadband seismic stations and 69 nodal seismometers operated in the vicinity of a 27 km long segment of dark fiber DAS array in the Imperial Valley, Southern California. The study area is a sedimentary basin characterized by intense seismicity and faulting in a transtensional tectonic regime, and hosts multiple producing geothermal fields. The broadband stations used direct-burial sensors with a corner period of 120 s and operated continuously for a year from September 2021 to September 2022. The 5 Hz three-component nodal seismometers acquired continuous data for a month approximately from February to March 2022 over a ∼37 km × ∼24 km area, with an average interstation spacing of ∼3 km. Both the broadband and the nodal stations recorded a wealth of ambient seismic noise and high-quality local earthquake data that can be used in a variety of seismological analyses, including local earthquake detection and location, and body-wave and surface-wave tomography.","PeriodicalId":21687,"journal":{"name":"Seismological Research Letters","volume":"2016 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismological Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0220230081","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Distributed acoustic sensing (DAS) technology provides the capability to efficiently acquire dense and continuous seismic data on preexisting, unused fiber-optic cables buried in the ground (dark fiber) that were originally deployed for telecommunication. However, these fiber installations typically use existing “right-of-way corridors” along roadways and railway tracks, leading to piecewise linear or quasi-linear seismic receiver geometries, thereby reducing their utility in seismic studies over a broad areal extent. Short-term and dense arrays of seismometers can be deployed to complement dark fiber DAS arrays, leading to improved seismic receiver coverage over a broader area in the vicinity of the DAS array. This study describes the deployment strategies and procedures, data, and metadata of a contemporaneous and complementary network of three temporary broadband seismic stations and 69 nodal seismometers operated in the vicinity of a 27 km long segment of dark fiber DAS array in the Imperial Valley, Southern California. The study area is a sedimentary basin characterized by intense seismicity and faulting in a transtensional tectonic regime, and hosts multiple producing geothermal fields. The broadband stations used direct-burial sensors with a corner period of 120 s and operated continuously for a year from September 2021 to September 2022. The 5 Hz three-component nodal seismometers acquired continuous data for a month approximately from February to March 2022 over a ∼37 km × ∼24 km area, with an average interstation spacing of ∼3 km. Both the broadband and the nodal stations recorded a wealth of ambient seismic noise and high-quality local earthquake data that can be used in a variety of seismological analyses, including local earthquake detection and location, and body-wave and surface-wave tomography.