Giovanni Paolo Carlo Tancredi, Eleonora Bottani, Giuseppe Vignali
{"title":"Digital twin-enabled process control in the food industry: proposal of a framework based on two case studies","authors":"Giovanni Paolo Carlo Tancredi, Eleonora Bottani, Giuseppe Vignali","doi":"10.1080/00207543.2023.2260495","DOIUrl":null,"url":null,"abstract":"AbstractNowadays many processes in the food industry are monitored in an automatic way, with the purpose of minimising the need for workforce and of ensuring the proper control of the quality and safety of the foodstuff. All the sensors share data with a centralised management unit, where often a Manufacturing Execution System collects and evaluates them. As reported in recent research, however, a further step that can be undertaken, exploiting Industry 4.0 enabling technologies, is the implementation of digital twin approaches, with the additional aim to prevent possible issues during production. In line with these considerations, this work aims at showing two different digital twin models intended for improving the control of as many real food systems. Liquid and powder fluids are taken as examples for highlighting the differences in the optimization of the two food processes, as well as for fully exploring the potential of the digital twin approach. Finally, based on the real data taken from two pilot plants, a framework for the selection of the best digital twin tool in the food sector is delineated.KEYWORDS: Digital twinproduction planning and controlfood processesprocess controlIndustry 4.0 Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData that support the findings of this study are available on request to the Corresponding author, prof. G. Vignali.Notes1 https://www.ni.com/it-it/shop/labview.html.2 https://www.bornemann.com/en-US/Home/.3 https://www.rtautomation.com/technologies/modbus-rtu/.4 http://www.kimo.it/wp-content/uploads/2016/10/24025.pdf.5 https://www.aec-smd.it/prodotto/m60sh86-to0512xxxc.6 https://www.aec-smd.it/product/smd1104lie.7 https://www.modbus.org/docs/PI_MBUS_300.pdf.8 https://www.ni.com/it-it/innovations/white-papers/14/the-modbus-protocol-in-depth.html.Additional informationNotes on contributorsGiovanni Paolo Carlo TancrediGiovanni Paolo Carlo Tancredi is Ph.D. Student in Industrial Engineering at the University of Parma. He graduated in Mechanical Engineering at the University of Parma in 2020, and began his research career, as a Research Fellow, with ‘Analysis and implementation in the field of advanced solutions on machines and assemblies of machines for the improvement of safety conditions at work’. His current field of research concerns the Digital Twin for data analysis and monitoring of production systems.Eleonora BottaniEleonora Bottani is full professor of Industrial Logistics at the Department of Engineering and Architecture of the University of Parma since November 2019. She graduated (with distinction) in Industrial Engineering and Management in 2002 and got her Ph.D. in Industrial Engineering in 2006, both at the University of Parma, where she currently has numerous academic duties. From a scientific point of view, she is active in research primarily related to logistics and supply chain management topics; secondary topics refer to the industrial plants area. She is author (or co-author) of >200 scientific papers (citations on Scopus >3800; H-index = 32), referee for more than 60 international journals, editorial board member of five scientific journals, Associate Editor for various journals, and editor-in-chief of a scientific journal.Giuseppe VignaliGiuseppe Vignali is Associate Professor at the University of Parma. He graduated in Mechanical Engineering at the University of Parma in 2004. In 2009, he received his Ph.D. in Industrial Engineering related to the analysis and optimization of food processes. His research activities concern food processing/packaging and safety/security of industrial plants. Results of his studies related to those topics which have been published in more than 150 scientific papers, mostly which are indexed in Scopus database (citations on Scopus >1650; H-index = 22).","PeriodicalId":14307,"journal":{"name":"International Journal of Production Research","volume":"47 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207543.2023.2260495","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractNowadays many processes in the food industry are monitored in an automatic way, with the purpose of minimising the need for workforce and of ensuring the proper control of the quality and safety of the foodstuff. All the sensors share data with a centralised management unit, where often a Manufacturing Execution System collects and evaluates them. As reported in recent research, however, a further step that can be undertaken, exploiting Industry 4.0 enabling technologies, is the implementation of digital twin approaches, with the additional aim to prevent possible issues during production. In line with these considerations, this work aims at showing two different digital twin models intended for improving the control of as many real food systems. Liquid and powder fluids are taken as examples for highlighting the differences in the optimization of the two food processes, as well as for fully exploring the potential of the digital twin approach. Finally, based on the real data taken from two pilot plants, a framework for the selection of the best digital twin tool in the food sector is delineated.KEYWORDS: Digital twinproduction planning and controlfood processesprocess controlIndustry 4.0 Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementData that support the findings of this study are available on request to the Corresponding author, prof. G. Vignali.Notes1 https://www.ni.com/it-it/shop/labview.html.2 https://www.bornemann.com/en-US/Home/.3 https://www.rtautomation.com/technologies/modbus-rtu/.4 http://www.kimo.it/wp-content/uploads/2016/10/24025.pdf.5 https://www.aec-smd.it/prodotto/m60sh86-to0512xxxc.6 https://www.aec-smd.it/product/smd1104lie.7 https://www.modbus.org/docs/PI_MBUS_300.pdf.8 https://www.ni.com/it-it/innovations/white-papers/14/the-modbus-protocol-in-depth.html.Additional informationNotes on contributorsGiovanni Paolo Carlo TancrediGiovanni Paolo Carlo Tancredi is Ph.D. Student in Industrial Engineering at the University of Parma. He graduated in Mechanical Engineering at the University of Parma in 2020, and began his research career, as a Research Fellow, with ‘Analysis and implementation in the field of advanced solutions on machines and assemblies of machines for the improvement of safety conditions at work’. His current field of research concerns the Digital Twin for data analysis and monitoring of production systems.Eleonora BottaniEleonora Bottani is full professor of Industrial Logistics at the Department of Engineering and Architecture of the University of Parma since November 2019. She graduated (with distinction) in Industrial Engineering and Management in 2002 and got her Ph.D. in Industrial Engineering in 2006, both at the University of Parma, where she currently has numerous academic duties. From a scientific point of view, she is active in research primarily related to logistics and supply chain management topics; secondary topics refer to the industrial plants area. She is author (or co-author) of >200 scientific papers (citations on Scopus >3800; H-index = 32), referee for more than 60 international journals, editorial board member of five scientific journals, Associate Editor for various journals, and editor-in-chief of a scientific journal.Giuseppe VignaliGiuseppe Vignali is Associate Professor at the University of Parma. He graduated in Mechanical Engineering at the University of Parma in 2004. In 2009, he received his Ph.D. in Industrial Engineering related to the analysis and optimization of food processes. His research activities concern food processing/packaging and safety/security of industrial plants. Results of his studies related to those topics which have been published in more than 150 scientific papers, mostly which are indexed in Scopus database (citations on Scopus >1650; H-index = 22).
期刊介绍:
The International Journal of Production Research (IJPR), published since 1961, is a well-established, highly successful and leading journal reporting manufacturing, production and operations management research.
IJPR is published 24 times a year and includes papers on innovation management, design of products, manufacturing processes, production and logistics systems. Production economics, the essential behaviour of production resources and systems as well as the complex decision problems that arise in design, management and control of production and logistics systems are considered.
IJPR is a journal for researchers and professors in mechanical engineering, industrial and systems engineering, operations research and management science, and business. It is also an informative reference for industrial managers looking to improve the efficiency and effectiveness of their production systems.