Influence of ultrafine-grained structure parameters on the annealing-induced hardening and deformation-induced softening effects in pure Al

Q1 Engineering
Dinislam I. Sadykov , Andrey E. Medvedev , Maxim Yu. Murashkin , Nariman A. Enikeev , Demid A. Kirilenko , Tatiana S. Orlova
{"title":"Influence of ultrafine-grained structure parameters on the annealing-induced hardening and deformation-induced softening effects in pure Al","authors":"Dinislam I. Sadykov ,&nbsp;Andrey E. Medvedev ,&nbsp;Maxim Yu. Murashkin ,&nbsp;Nariman A. Enikeev ,&nbsp;Demid A. Kirilenko ,&nbsp;Tatiana S. Orlova","doi":"10.1016/j.ijlmm.2023.10.006","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the influence of parameters of initial ultrafine-grained (UFG) structure in commercially pure (CP) Al on annealing-induced hardening (AIH) and deformation-induced softening (DIS) effects. UFG structures were formed via processing CP Al by various methods of severe plastic deformation (high pressure torsion (HPT), equal channel angular pressing (ECAP) and combination of ECAP and cold rolling (CR)). AIH and DIS effects are observed in all the studied UFG structures. However, HPT Al demonstrates large increase of strength due to annealing and drastic gain of ductility after subsequent additional deformation whereas in ECAP Al and ECAP + CR Al both effects are much less pronounced. Microstructure characterization by X-ray diffraction (XRD) analysis, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) was performed for HPT Al and ECAP + CR Al in the three studied states: before and after annealing and after annealing and subsequent additional deformation. Analysis of microstructure evolution during annealing and subsequent additional deformation shows that the key microstructure parameter which is responsible for AIH and DIS effect is the change of dislocation density in grain interior in ECAP + CR Al, whereas in HPT Al the effects are related to the change of dislocation density at/near grain boundaries. In addition, outstanding combination of high strength (∼210 MPa), high electrical conductivity (∼62 %IACS) with sufficiently good ductility (7–10 %) and thermal stability (up to 150°С, at least) was achieved for ECAP + CR Al after annealing at 150 °C, 1h.</p></div>","PeriodicalId":52306,"journal":{"name":"International Journal of Lightweight Materials and Manufacture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588840423000549/pdfft?md5=dd41e418a463a3f8dd3bcdb698980289&pid=1-s2.0-S2588840423000549-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Lightweight Materials and Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588840423000549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the influence of parameters of initial ultrafine-grained (UFG) structure in commercially pure (CP) Al on annealing-induced hardening (AIH) and deformation-induced softening (DIS) effects. UFG structures were formed via processing CP Al by various methods of severe plastic deformation (high pressure torsion (HPT), equal channel angular pressing (ECAP) and combination of ECAP and cold rolling (CR)). AIH and DIS effects are observed in all the studied UFG structures. However, HPT Al demonstrates large increase of strength due to annealing and drastic gain of ductility after subsequent additional deformation whereas in ECAP Al and ECAP + CR Al both effects are much less pronounced. Microstructure characterization by X-ray diffraction (XRD) analysis, electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) was performed for HPT Al and ECAP + CR Al in the three studied states: before and after annealing and after annealing and subsequent additional deformation. Analysis of microstructure evolution during annealing and subsequent additional deformation shows that the key microstructure parameter which is responsible for AIH and DIS effect is the change of dislocation density in grain interior in ECAP + CR Al, whereas in HPT Al the effects are related to the change of dislocation density at/near grain boundaries. In addition, outstanding combination of high strength (∼210 MPa), high electrical conductivity (∼62 %IACS) with sufficiently good ductility (7–10 %) and thermal stability (up to 150°С, at least) was achieved for ECAP + CR Al after annealing at 150 °C, 1h.

超细晶粒结构参数对纯铝退火诱导硬化和变形诱导软化效应的影响
这项研究探讨了商业纯铝(CP)中初始超细晶粒(UFG)结构参数对退火诱导硬化(AIH)和变形诱导软化(DIS)效应的影响。通过各种严重塑性变形方法(高压扭转 (HPT)、等通道角压 (ECAP) 以及 ECAP 和冷轧 (CR) 组合)加工 CP Al,形成了 UFG 结构。在所有研究的 UFG 结构中都观察到了 AIH 和 DIS 效应。然而,HPT 铝在退火后强度大幅提高,在随后的附加变形后延展性急剧增加,而在 ECAP 铝和 ECAP + CR 铝中,这两种效应都不太明显。通过 X 射线衍射 (XRD)、电子反向散射衍射 (EBSD) 和透射电子显微镜 (TEM) 对 HPT Al 和 ECAP + CR Al 在三种研究状态下的微观结构进行了表征:退火前后以及退火和后续附加变形后。对退火和后续附加变形过程中微观结构演变的分析表明,在 ECAP + CR Al 中,造成 AIH 和 DIS 效应的关键微观结构参数是晶粒内部位错密度的变化,而在 HPT Al 中,这些效应与晶界处/近晶界处位错密度的变化有关。此外,ECAP + CR Al 在 150 °C 退火 1 小时后,实现了高强度(∼210 兆帕)、高导电率(∼62 %IACS)、足够好的延展性(7-10 %)和热稳定性(至少高达 150°С)的完美结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Lightweight Materials and Manufacture
International Journal of Lightweight Materials and Manufacture Engineering-Industrial and Manufacturing Engineering
CiteScore
9.90
自引率
0.00%
发文量
52
审稿时长
48 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信