Normal Families and Quasiregular Mappings

IF 0.7 3区 数学 Q2 MATHEMATICS
Alastair N. Fletcher, Daniel A. Nicks
{"title":"Normal Families and Quasiregular Mappings","authors":"Alastair N. Fletcher, Daniel A. Nicks","doi":"10.1017/s0013091523000640","DOIUrl":null,"url":null,"abstract":"Abstract Beardon and Minda gave a characterization of normal families of holomorphic and meromorphic functions in terms of a locally uniform Lipschitz condition. Here, we generalize this viewpoint to families of mappings in higher dimensions that are locally uniformly continuous with respect to a given modulus of continuity. Our main application is to the normality of families of quasiregular mappings through a locally uniform Hölder condition. This provides a unified framework in which to consider families of quasiregular mappings, both recovering known results of Miniowitz, Vuorinen and others and yielding new results. In particular, normal quasimeromorphic mappings, Yosida quasiregular mappings and Bloch quasiregular mappings can be viewed as classes of quasiregular mappings which arise through consideration of various metric spaces for the domain and range. We give several characterizations of these classes and obtain upper bounds on the rate of growth in each class.","PeriodicalId":20586,"journal":{"name":"Proceedings of the Edinburgh Mathematical Society","volume":"30 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Edinburgh Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0013091523000640","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Beardon and Minda gave a characterization of normal families of holomorphic and meromorphic functions in terms of a locally uniform Lipschitz condition. Here, we generalize this viewpoint to families of mappings in higher dimensions that are locally uniformly continuous with respect to a given modulus of continuity. Our main application is to the normality of families of quasiregular mappings through a locally uniform Hölder condition. This provides a unified framework in which to consider families of quasiregular mappings, both recovering known results of Miniowitz, Vuorinen and others and yielding new results. In particular, normal quasimeromorphic mappings, Yosida quasiregular mappings and Bloch quasiregular mappings can be viewed as classes of quasiregular mappings which arise through consideration of various metric spaces for the domain and range. We give several characterizations of these classes and obtain upper bounds on the rate of growth in each class.
正规族与拟正则映射
Beardon和Minda给出了局部一致Lipschitz条件下全纯函数和亚纯函数正规族的刻画。在这里,我们将这一观点推广到高维的映射族,这些映射族相对于给定的连续模是局部一致连续的。我们的主要应用是通过一个局部一致Hölder条件来讨论拟正则映射族的正态性。这为考虑拟正则映射族提供了一个统一的框架,既恢复了Miniowitz、Vuorinen等人的已知结果,又产生了新的结果。特别地,正规拟亚纯映射、Yosida拟正则映射和Bloch拟正则映射可以看作是一类拟正则映射,这些拟正则映射是通过考虑域和范围的各种度量空间而产生的。我们给出了这些类的几个特征,并得到了每一类增长率的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
49
审稿时长
6 months
期刊介绍: The Edinburgh Mathematical Society was founded in 1883 and over the years, has evolved into the principal society for the promotion of mathematics research in Scotland. The Society has published its Proceedings since 1884. This journal contains research papers on topics in a broad range of pure and applied mathematics, together with a number of topical book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信