Modified α -Parameterized Differential Transform Method for Solving Nonlinear Generalized Gardner Equation

IF 1.2 Q2 MATHEMATICS, APPLIED
Abdulghafor M. Al-Rozbayani, Ahmed Farooq Qasim
{"title":"Modified <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\"> <mi>α</mi> </math>-Parameterized Differential Transform Method for Solving Nonlinear Generalized Gardner Equation","authors":"Abdulghafor M. Al-Rozbayani, Ahmed Farooq Qasim","doi":"10.1155/2023/3339655","DOIUrl":null,"url":null,"abstract":"In this article, we present a novel enhancement to the <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\"> <mi>α</mi> </math> -parameterized differential transform method (PDTM) for solving nonlinear boundary value problems. The proposed method is applied to solve the generalized Gardner equation by utilizing genetic algorithms to obtain optimal parameter values. Our proposed approach extends the general differential transformation method, allowing for the use of various values for the coefficient <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\"> <mi>α</mi> </math> . Our solution procedure offers a distinct advantage by allowing the original differential transformation method to be divided into multiple steps, thereby illustrating specific solution properties for nonlinear boundary value problems. Additionally, possible alternative solutions based on varying parameter values are also explored and discussed. The results with those obtained through the DTM method and exact solutions are compared to confirm the accuracy of our method and its efficiency in reaching the exact solution quickly.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3339655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a novel enhancement to the α -parameterized differential transform method (PDTM) for solving nonlinear boundary value problems. The proposed method is applied to solve the generalized Gardner equation by utilizing genetic algorithms to obtain optimal parameter values. Our proposed approach extends the general differential transformation method, allowing for the use of various values for the coefficient α . Our solution procedure offers a distinct advantage by allowing the original differential transformation method to be divided into multiple steps, thereby illustrating specific solution properties for nonlinear boundary value problems. Additionally, possible alternative solutions based on varying parameter values are also explored and discussed. The results with those obtained through the DTM method and exact solutions are compared to confirm the accuracy of our method and its efficiency in reaching the exact solution quickly.
求解非线性广义Gardner方程的改进α参数化微分变换方法
在本文中,我们对求解非线性边值问题的α参数化微分变换方法(PDTM)提出了一种新的改进。将该方法应用于利用遗传算法求解广义Gardner方程,得到最优参数值。我们提出的方法扩展了一般的微分变换方法,允许使用系数α的不同值。我们的求解过程提供了一个明显的优势,它允许将原始的微分变换方法分为多个步骤,从而说明了非线性边值问题的特定解的性质。此外,还探索和讨论了基于不同参数值的可能替代解决方案。将所得结果与DTM法和精确解的结果进行了比较,验证了该方法的准确性和快速得到精确解的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信