Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices

IF 1.8 3区 数学 Q1 MATHEMATICS
Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu
{"title":"Schur complement-based infinity norm bounds for the inverse of $ S $-Sparse Ostrowski Brauer matrices","authors":"Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu","doi":"10.3934/math.20231317","DOIUrl":null,"url":null,"abstract":"<abstract><p>In this paper, we study the Schur complement problem of $ S $-SOB matrices, and prove that the Schur complement of $ S $-Sparse Ostrowski-Brauer ($ S $-SOB) matrices is still in the same class under certain conditions. Based on the Schur complement of $ S $-SOB matrices, some upper bound for the infinite norm of $ S $-SOB matrices is obtained. Numerical examples are given to certify the validity of the obtained results. By using the infinity norm bound, an error bound is given for the linear complementarity problems of $ S $-SOB matrices.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"42 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231317","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Schur complement problem of $ S $-SOB matrices, and prove that the Schur complement of $ S $-Sparse Ostrowski-Brauer ($ S $-SOB) matrices is still in the same class under certain conditions. Based on the Schur complement of $ S $-SOB matrices, some upper bound for the infinite norm of $ S $-SOB matrices is obtained. Numerical examples are given to certify the validity of the obtained results. By using the infinity norm bound, an error bound is given for the linear complementarity problems of $ S $-SOB matrices.

S -稀疏Ostrowski - Brauer矩阵逆的基于Schur互补的无穷范数界
本文研究了$ S $-SOB矩阵的Schur补问题,并证明了$ S $-Sparse Ostrowski-Brauer ($ S $-SOB)矩阵的Schur补在一定条件下仍然属于同一类。基于$ S $-SOB矩阵的Schur补,得到了$ S $-SOB矩阵无穷范数的上界。数值算例验证了所得结果的有效性。利用无穷范数界,给出了$ S $-SOB矩阵线性互补问题的误差界。</ </abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信