Analysis of ETRSS-1 on-orbit performance and anomaly management

IF 1 Q3 ENGINEERING, AEROSPACE
Gadisa Dinaol
{"title":"Analysis of ETRSS-1 on-orbit performance and anomaly management","authors":"Gadisa Dinaol","doi":"10.1016/j.jsse.2023.08.006","DOIUrl":null,"url":null,"abstract":"<div><p>The Ethiopian remote sensing<span> microsatellite<span>, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude<span> selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.</span></span></span></p></div>","PeriodicalId":37283,"journal":{"name":"Journal of Space Safety Engineering","volume":"10 4","pages":"Pages 483-494"},"PeriodicalIF":1.0000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Space Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723000885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The Ethiopian remote sensing microsatellite, weighing 65 kg, was successfully launched into sun-synchronous orbit at an altitude of 628 km in 2019. The satellite has a three-year lifespan and employs a maneuver that minimizes the orbit perigee without adjusting the orbit apogee, resulting in an eccentric disposal orbit, with the perigee altitude selected to ensure re-entry into the Earth’s atmosphere within 25 years. This study presents an overview of the ETRSS-1 satellite system, including its subsystems alongside the hardware utilized during their development, as well as an analysis of its on-orbit performance. Furthermore, the spacecraft’s electro-optical multispectral camera and its ability to capture remote sensing data while adhering to appropriate operational constraints, as well as its imaging mission techniques, various types of failure modes, and anomaly detection detection techniques, will be investigated.

ETRSS-1在轨性能分析及异常处理
埃塞俄比亚遥感微卫星重65公斤,于2019年成功发射到海拔628公里的太阳同步轨道。该卫星的使用寿命为三年,采用了在不调整轨道远地点的情况下最小化轨道近地点的机动,导致偏心处置轨道,选择近地点高度以确保在25年内重新进入地球大气层。本研究概述了ETRSS-1卫星系统,包括其子系统以及在其开发过程中使用的硬件,并分析了其在轨性能。此外,将研究航天器的电光多光谱相机及其在遵守适当操作约束的情况下捕获遥感数据的能力,以及其成像任务技术、各种类型的故障模式和异常检测技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Space Safety Engineering
Journal of Space Safety Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
2.50
自引率
0.00%
发文量
80
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信