{"title":"Thread-modular counter abstraction: automated safety and termination proofs of parameterized software by reduction to sequential program verification","authors":"Thomas Pani, Georg Weissenbacher, Florian Zuleger","doi":"10.1007/s10703-023-00439-6","DOIUrl":null,"url":null,"abstract":"Abstract Parameterized programs are composed of an arbitrary number of concurrent, infinite-state threads. Automated safety and liveness proofs of such parameterized software are hard; state-of-the-art methods for their formal verification rely on intricate abstractions and complicated proof techniques that impede automation. In this paper, we introduce thread-modular counter abstraction (TMCA), a lean new abstraction technique to replace the existing heavy proof machinery. TMCA is a structured abstraction framework built from a novel combination of counter abstraction , thread-modular reasoning , and predicate abstraction . Its major strength lies in reducing the parameterized verification problem to the sequential setting, for which powerful proof procedures, efficient heuristics, and effective automated tools have been developed over the past decades. In this work, we first introduce the TMCA abstraction paradigm, then present a fully automated method for parameterized safety proofs, and finally discuss its application to automated termination and liveness proofs of parameterized software.","PeriodicalId":12430,"journal":{"name":"Formal Methods in System Design","volume":"47 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Methods in System Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10703-023-00439-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Parameterized programs are composed of an arbitrary number of concurrent, infinite-state threads. Automated safety and liveness proofs of such parameterized software are hard; state-of-the-art methods for their formal verification rely on intricate abstractions and complicated proof techniques that impede automation. In this paper, we introduce thread-modular counter abstraction (TMCA), a lean new abstraction technique to replace the existing heavy proof machinery. TMCA is a structured abstraction framework built from a novel combination of counter abstraction , thread-modular reasoning , and predicate abstraction . Its major strength lies in reducing the parameterized verification problem to the sequential setting, for which powerful proof procedures, efficient heuristics, and effective automated tools have been developed over the past decades. In this work, we first introduce the TMCA abstraction paradigm, then present a fully automated method for parameterized safety proofs, and finally discuss its application to automated termination and liveness proofs of parameterized software.
期刊介绍:
The focus of this journal is on formal methods for designing, implementing, and validating the correctness of hardware (VLSI) and software systems. The stimulus for starting a journal with this goal came from both academia and industry. In both areas, interest in the use of formal methods has increased rapidly during the past few years. The enormous cost and time required to validate new designs has led to the realization that more powerful techniques must be developed. A number of techniques and tools are currently being devised for improving the reliability, and robustness of complex hardware and software systems. While the boundary between the (sub)components of a system that are cast in hardware, firmware, or software continues to blur, the relevant design disciplines and formal methods are maturing rapidly. Consequently, an important (and useful) collection of commonly applicable formal methods are expected to emerge that will strongly influence future design environments and design methods.