Microwave assisted synthesis for ϵ-MnO2 nanostructures on Ni foam as for rechargeable Li–O2 battery applications

Rayavarapu Prasada Prasada Rao, Brindha Ramasubramanian, R. Saritha, Seeram Ramakrishna
{"title":"Microwave assisted synthesis for ϵ-MnO2 nanostructures on Ni foam as for rechargeable Li–O2 battery applications","authors":"Rayavarapu Prasada Prasada Rao, Brindha Ramasubramanian, R. Saritha, Seeram Ramakrishna","doi":"10.1088/2632-959x/acfe26","DOIUrl":null,"url":null,"abstract":"Abstract Lithium-air batteries exhibits high practical energy densities ranging from 1000 to 4000 Wh Kg-1, rendering them appealing for applications in portable electronic devices and electric vehicles. Nevertheless, they grapple with challenges like low charge-discharge efficiency, limited stability over multiple cycles, and electrode degradation stemming from undesirable side reactions, thus impeding their commercial market. In this study, ϵ-MnO2 petal-like nanostructures were synthesized on Ni foam via simple, microwave-assisted synthesis approach. The resulting ϵ-MnO2/Ni electrode demonstrated storage capacities (1982 mAh/g discharge capacity at 200 mA/g) alongside enhanced cyclability and stability over 100 cycles, independent of discharge depth. This electrochemical performance can be attributed to its 3D morphology, oxygen defects, and the absence of side reactions from carbon-based additives. Overall, ϵ-MnO2/Ni electrode catalysts hold potential for realizing cost-effective Li-O2 based energy storage technologies.","PeriodicalId":118165,"journal":{"name":"Nano Express","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-959x/acfe26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Lithium-air batteries exhibits high practical energy densities ranging from 1000 to 4000 Wh Kg-1, rendering them appealing for applications in portable electronic devices and electric vehicles. Nevertheless, they grapple with challenges like low charge-discharge efficiency, limited stability over multiple cycles, and electrode degradation stemming from undesirable side reactions, thus impeding their commercial market. In this study, ϵ-MnO2 petal-like nanostructures were synthesized on Ni foam via simple, microwave-assisted synthesis approach. The resulting ϵ-MnO2/Ni electrode demonstrated storage capacities (1982 mAh/g discharge capacity at 200 mA/g) alongside enhanced cyclability and stability over 100 cycles, independent of discharge depth. This electrochemical performance can be attributed to its 3D morphology, oxygen defects, and the absence of side reactions from carbon-based additives. Overall, ϵ-MnO2/Ni electrode catalysts hold potential for realizing cost-effective Li-O2 based energy storage technologies.
微波辅助合成可充电锂氧电池用泡沫镍纳米结构ϵ-MnO2
锂空气电池具有很高的实用能量密度,范围从1000到4000 Wh Kg-1,使其在便携式电子设备和电动汽车中的应用具有吸引力。然而,它们面临着诸如充放电效率低、多次循环稳定性有限以及不良副反应引起的电极降解等挑战,从而阻碍了它们的商业市场。在本研究中,通过简单的微波辅助合成方法,在泡沫镍上合成了ϵ-MnO2花瓣状纳米结构。所得到的ϵ-MnO2/Ni电极显示出存储容量(200 mA/g时的放电容量为1982 mAh/g),并且在100次循环中增强了可循环性和稳定性,与放电深度无关。这种电化学性能可归因于其三维形态、氧缺陷以及没有碳基添加剂的副反应。总体而言,ϵ-MnO2/Ni电极催化剂具有实现具有成本效益的基于Li-O2的储能技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信