Specific Heat Smoothing Methods for Numerical Heat Transfer Analysis Involving Phase Change in a Model Food System

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Shengyue Shan, Dennis R. Heldman, Osvaldo H. Campanella
{"title":"Specific Heat Smoothing Methods for Numerical Heat Transfer Analysis Involving Phase Change in a Model Food System","authors":"Shengyue Shan,&nbsp;Dennis R. Heldman,&nbsp;Osvaldo H. Campanella","doi":"10.1007/s12393-023-09359-x","DOIUrl":null,"url":null,"abstract":"<div><p>For high-moisture foods, the water latent heat of fusion during a phase change process causes a significant discontinuity in the temperature-dependent apparent specific heat of food products, which leads to complications during the numerical solution of heat transfer problems. The discontinuity in the apparent specific heat as a function of temperature can be alleviated by smoothing. Previously, a piecewise approximation smoothing method was developed and extensively used. In this study, different approaches which are based on curve fitting, the use of a sigmoid function, and data interpolation were developed. The performance of these methods in numerical simulations of food freezing and thawing processes was evaluated. The heat transfer model was implemented with the MATLAB <i>PDE</i> Toolbox. Simulated temperature profiles of representative freezing/thawing processes showed a reasonable agreement with experimental values collected from the literature. The optimal smoothing method showed comparatively less numerical oscillation, higher accuracy, faster computation speed, and simplicity in implementation. Recommendations were provided for the utilization of the smoothing methods under different circumstances.</p></div>","PeriodicalId":565,"journal":{"name":"Food Engineering Reviews","volume":"16 1","pages":"116 - 128"},"PeriodicalIF":5.3000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Engineering Reviews","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12393-023-09359-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For high-moisture foods, the water latent heat of fusion during a phase change process causes a significant discontinuity in the temperature-dependent apparent specific heat of food products, which leads to complications during the numerical solution of heat transfer problems. The discontinuity in the apparent specific heat as a function of temperature can be alleviated by smoothing. Previously, a piecewise approximation smoothing method was developed and extensively used. In this study, different approaches which are based on curve fitting, the use of a sigmoid function, and data interpolation were developed. The performance of these methods in numerical simulations of food freezing and thawing processes was evaluated. The heat transfer model was implemented with the MATLAB PDE Toolbox. Simulated temperature profiles of representative freezing/thawing processes showed a reasonable agreement with experimental values collected from the literature. The optimal smoothing method showed comparatively less numerical oscillation, higher accuracy, faster computation speed, and simplicity in implementation. Recommendations were provided for the utilization of the smoothing methods under different circumstances.

Abstract Image

Abstract Image

用于模型食品系统中涉及相变的数值传热分析的比热平滑方法
对于高水分食品,相变过程中水的熔融潜热会导致食品的表观比热随温度变化出现明显的不连续性,从而导致传热问题的数值求解变得复杂。表观比热随温度变化的不连续性可以通过平滑来缓解。在此之前,人们已经开发并广泛使用了片断近似平滑法。本研究开发了基于曲线拟合、使用 sigmoid 函数和数据插值的不同方法。对这些方法在食品冷冻和解冻过程数值模拟中的性能进行了评估。传热模型由 MATLAB PDE 工具箱实现。具有代表性的冷冻/解冻过程的模拟温度曲线与从文献中收集的实验值显示出合理的一致性。最佳平滑法的数值振荡相对较小、精度较高、计算速度较快、实施简单。为在不同情况下使用平滑方法提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Engineering Reviews
Food Engineering Reviews FOOD SCIENCE & TECHNOLOGY-
CiteScore
14.20
自引率
1.50%
发文量
27
审稿时长
>12 weeks
期刊介绍: Food Engineering Reviews publishes articles encompassing all engineering aspects of today’s scientific food research. The journal focuses on both classic and modern food engineering topics, exploring essential factors such as the health, nutritional, and environmental aspects of food processing. Trends that will drive the discipline over time, from the lab to industrial implementation, are identified and discussed. The scope of topics addressed is broad, including transport phenomena in food processing; food process engineering; physical properties of foods; food nano-science and nano-engineering; food equipment design; food plant design; modeling food processes; microbial inactivation kinetics; preservation technologies; engineering aspects of food packaging; shelf-life, storage and distribution of foods; instrumentation, control and automation in food processing; food engineering, health and nutrition; energy and economic considerations in food engineering; sustainability; and food engineering education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信