Formation of Iron Phosphide Nanobundles from an Iron Oxyhydroxide Precursor

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY
Menuka Adhikari, Shubham Sharma, Elena Echeverria, David N. McIlroy and Yolanda Vasquez*, 
{"title":"Formation of Iron Phosphide Nanobundles from an Iron Oxyhydroxide Precursor","authors":"Menuka Adhikari,&nbsp;Shubham Sharma,&nbsp;Elena Echeverria,&nbsp;David N. McIlroy and Yolanda Vasquez*,&nbsp;","doi":"10.1021/acsnanoscienceau.3c00036","DOIUrl":null,"url":null,"abstract":"<p >Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (β-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-<i>n</i>-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe<sub>2</sub>P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.</p>","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":"3 6","pages":"491–499"},"PeriodicalIF":4.8000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnanoscienceau.3c00036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnanoscienceau.3c00036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Iron phosphide (FeP) nanoparticles have excellent properties such as fast charge transfer kinetics, high electrical conductivity, and high stability, making them a promising catalyst for hydrogen evolution reaction (HER). A challenge to the wide use of iron phosphide nanomaterials for this application is the available synthesis protocols that limit control over the resulting crystalline phase of the product. In this study, we report a method for synthesizing FeP through a solution-based process. Here, we use iron oxyhydroxide (β-FeOOH) as a cost-effective, environmentally friendly, and air-stable source of iron, along with tri-n-octylphosphine (TOP) as the phosphorus source and solvent. FeP is formed in a nanobundle morphology in the solution phase reaction at a temperature of 320 °C. The materials were characterized by pXRD and transmission electron microscopy (TEM). The optimization parameters evaluated to produce the phosphorus-rich FeP phase included the reaction rate, time, amount of TOP, and reaction temperature. Mixtures of Fe2P and FeP phases were obtained at shorter reaction times and slow heating rates (4.5 °C /min), while longer reaction times and faster heating rates (18.8 °C/min) favored the formation of phosphorus-rich FeP. Overall, the reaction lever that consistently yielded FeP as the predominant crystalline phase was a fast heat rate.

Abstract Image

Abstract Image

用氧化铁前驱体形成磷化铁纳米束
磷化铁(FeP)纳米粒子具有快速电荷转移动力学、高导电性和高稳定性等优异特性,使其成为氢进化反应(HER)的理想催化剂。将磷化铁纳米材料广泛应用于这一领域所面临的一个挑战是,现有的合成方案限制了对产品结晶相的控制。在本研究中,我们报告了一种通过溶液法合成 FeP 的方法。在这里,我们使用氢氧化铁(β-FeOOH)作为具有成本效益、环保且在空气中稳定的铁源,并使用三正辛基膦(TOP)作为磷源和溶剂。FeP 在 320 ℃ 的溶液相反应中形成纳米束状。这些材料通过 pXRD 和透射电子显微镜(TEM)进行了表征。为生成富磷 FeP 相而评估的优化参数包括反应速率、时间、TOP 量和反应温度。在较短的反应时间和较慢的加热速率(4.5 °C/分钟)下,可获得 Fe2P 和 FeP 的混合物,而较长的反应时间和较快的加热速率(18.8 °C/分钟)则有利于富磷 FeP 的形成。总之,快速加热速率是始终产生主要结晶相 FeP 的反应杠杆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信