Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries

Jiabao Li, Jingjing Hao, Ruoxing Wang, Quan Yuan, Tianyi Wang, Likun Pan, Junfeng Li, Chengyin Wang
{"title":"Ultra-stable cycling of organic carboxylate molecule hydrogen bonded with inorganic Ti3C2Tx MXene with improved redox kinetics for sodium-ion batteries","authors":"Jiabao Li,&nbsp;Jingjing Hao,&nbsp;Ruoxing Wang,&nbsp;Quan Yuan,&nbsp;Tianyi Wang,&nbsp;Likun Pan,&nbsp;Junfeng Li,&nbsp;Chengyin Wang","doi":"10.1002/bte2.20230033","DOIUrl":null,"url":null,"abstract":"<p>The application of small organic molecules for sodium-ion batteries is generally plagued by their high solubility, poor conductivity, and sluggish redox dynamics in organic electrolyte, thus developing efficient strategies to restrain solubilization while obtaining fast charge transfer becomes a challenge. Herein, a rational hybridization strategy through hydrogen bond between organic molecule and inorganic substrate has been proposed, employing the terminal –C═O of trisodium 1, 2, 4-benzenetricarboxylate (TBC) molecule and –OH groups of inorganic Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene, respectively. In general, such a design evidently mitigates the aggregation of both TBC molecules and Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene. Furthermore, the robust hydrogen bonding significantly mitigates the dissolution of TBC and guarantees the robust coupling between them, thus contributing to the integrity of electrode and modifying the electrochemical sodium storage in both half and full cells. Moreover, the systematic kinetic analysis and mechanism detection reveal improved charge transportation and robust two-electron electrochemical reversibility of the hybrid TBC/Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>. Taken together, this work demonstrates a potential novel strategy toward stable and practical organic battery chemistries through hydrogen bonding with inorganic compounds.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of small organic molecules for sodium-ion batteries is generally plagued by their high solubility, poor conductivity, and sluggish redox dynamics in organic electrolyte, thus developing efficient strategies to restrain solubilization while obtaining fast charge transfer becomes a challenge. Herein, a rational hybridization strategy through hydrogen bond between organic molecule and inorganic substrate has been proposed, employing the terminal –C═O of trisodium 1, 2, 4-benzenetricarboxylate (TBC) molecule and –OH groups of inorganic Ti3C2Tx MXene, respectively. In general, such a design evidently mitigates the aggregation of both TBC molecules and Ti3C2Tx MXene. Furthermore, the robust hydrogen bonding significantly mitigates the dissolution of TBC and guarantees the robust coupling between them, thus contributing to the integrity of electrode and modifying the electrochemical sodium storage in both half and full cells. Moreover, the systematic kinetic analysis and mechanism detection reveal improved charge transportation and robust two-electron electrochemical reversibility of the hybrid TBC/Ti3C2Tx. Taken together, this work demonstrates a potential novel strategy toward stable and practical organic battery chemistries through hydrogen bonding with inorganic compounds.

Abstract Image

Abstract Image

有机羧酸分子与无机 Ti3C2Tx MXene 氢键的超稳定循环,改善钠离子电池的氧化还原动力学
小分子有机物在钠离子电池中的应用普遍受到其在有机电解质中溶解度高、导电性差和氧化还原动力学迟缓的困扰,因此开发既能抑制溶解又能获得快速电荷转移的有效策略成为一项挑战。本文提出了一种通过有机分子和无机基质之间的氢键进行合理杂化的策略,分别利用 1,2,4-苯三羧酸三钠(TBC)分子的末端 -C═O 和无机 Ti3C2Tx MXene 的 -OH 基团。总的来说,这种设计明显减轻了 TBC 分子和 Ti3C2Tx MXene 的聚集。此外,稳固的氢键大大缓解了 TBC 的溶解,并保证了它们之间的稳固耦合,从而促进了电极的完整性,并改变了半电池和全电池的电化学钠存储。此外,系统动力学分析和机理检测显示,TBC/Ti3C2Tx 混合电池改善了电荷传输,并具有稳健的双电子电化学可逆性。综上所述,这项工作展示了一种潜在的新策略,即通过与无机化合物的氢键结合,实现稳定、实用的有机电池化学反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信