{"title":"Structure of the Macdonald groups in one parameter","authors":"Alexander Montoya Ocampo, Fernando Szechtman","doi":"10.1515/jgth-2023-0036","DOIUrl":null,"url":null,"abstract":"Abstract Consider the Macdonald groups <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo stretchy=\"false\">⟨</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> </m:mrow> <m:mo fence=\"true\" lspace=\"0em\" rspace=\"0em\">∣</m:mo> <m:mrow> <m:mrow> <m:msup> <m:mi>A</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>A</m:mi> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>A</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> <m:mo rspace=\"0.337em\">,</m:mo> <m:mrow> <m:msup> <m:mi>B</m:mi> <m:mrow> <m:mo stretchy=\"false\">[</m:mo> <m:mi>B</m:mi> <m:mo>,</m:mo> <m:mi>A</m:mi> <m:mo stretchy=\"false\">]</m:mo> </m:mrow> </m:msup> <m:mo>=</m:mo> <m:msup> <m:mi>B</m:mi> <m:mi>α</m:mi> </m:msup> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">⟩</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha)=\\langle A,B\\mid A^{[A,B]}=A^{\\alpha},\\,B^{[B,A]}=B^{\\alpha}\\rangle , <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>α</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">Z</m:mi> </m:mrow> </m:math> \\alpha\\in\\mathbb{Z} . We fill a gap in Macdonald’s proof that <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha) is always nilpotent, and proceed to determine the order, upper and lower central series, nilpotency class, and exponent of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>G</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>α</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> G(\\alpha) .","PeriodicalId":50188,"journal":{"name":"Journal of Group Theory","volume":" 81","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Consider the Macdonald groups G(α)=⟨A,B∣A[A,B]=Aα,B[B,A]=Bα⟩ G(\alpha)=\langle A,B\mid A^{[A,B]}=A^{\alpha},\,B^{[B,A]}=B^{\alpha}\rangle , α∈Z \alpha\in\mathbb{Z} . We fill a gap in Macdonald’s proof that G(α) G(\alpha) is always nilpotent, and proceed to determine the order, upper and lower central series, nilpotency class, and exponent of G(α) G(\alpha) .
期刊介绍:
The Journal of Group Theory is devoted to the publication of original research articles in all aspects of group theory. Articles concerning applications of group theory and articles from research areas which have a significant impact on group theory will also be considered.
Topics:
Group Theory-
Representation Theory of Groups-
Computational Aspects of Group Theory-
Combinatorics and Graph Theory-
Algebra and Number Theory