Nets in $$\mathbb {P}^2$$ and Alexander Duality

Nancy Abdallah, Hal Schenck
{"title":"Nets in $$\\mathbb {P}^2$$ and Alexander Duality","authors":"Nancy Abdallah, Hal Schenck","doi":"10.1007/s00454-023-00504-1","DOIUrl":null,"url":null,"abstract":"A net in $$\\mathbb {P}^2$$ is a configuration of lines $$\\mathcal {A}$$ and points X satisfying certain incidence properties. Nets appear in a variety of settings, ranging from quasigroups to combinatorial design to classification of Kac–Moody algebras to cohomology jump loci of hyperplane arrangements. For a matroid M and rank r, we associate a monomial ideal (a monomial variant of the Orlik–Solomon ideal) to the set of flats of M of rank $$\\le r$$ . In the context of line arrangements in $$\\mathbb {P}^2$$ , applying Alexander duality to the resulting ideal yields insight into the combinatorial structure of nets.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00504-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A net in $$\mathbb {P}^2$$ is a configuration of lines $$\mathcal {A}$$ and points X satisfying certain incidence properties. Nets appear in a variety of settings, ranging from quasigroups to combinatorial design to classification of Kac–Moody algebras to cohomology jump loci of hyperplane arrangements. For a matroid M and rank r, we associate a monomial ideal (a monomial variant of the Orlik–Solomon ideal) to the set of flats of M of rank $$\le r$$ . In the context of line arrangements in $$\mathbb {P}^2$$ , applying Alexander duality to the resulting ideal yields insight into the combinatorial structure of nets.
net在$$\mathbb {P}^2$$和Alexander Duality
$$\mathbb {P}^2$$中的网是线$$\mathcal {A}$$和点X满足一定关联性质的构型。从拟群到组合设计,再到Kac-Moody代数的分类,再到超平面排列的上同跳轨迹,网络出现在各种各样的环境中。对于秩为r的矩阵M,我们将一个单项理想(orlik_solomon理想的单项变体)与秩为$$\le r$$的M的平面集合联系起来。在$$\mathbb {P}^2$$中的线安排的背景下,将亚历山大对偶性应用于所得到的理想,可以深入了解网的组合结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信