Yongpeng Lin, Chenge An, Shan Zheng, Ruihua Nie, Gary Parker, Marwan A. Hassan, Matthew J. Czapiga, Xudong Fu
{"title":"Degradation of a foreland river after the Wenchuan Earthquake, China: A combined effect of weirs, sediment supply and sediment mining","authors":"Yongpeng Lin, Chenge An, Shan Zheng, Ruihua Nie, Gary Parker, Marwan A. Hassan, Matthew J. Czapiga, Xudong Fu","doi":"10.1029/2023wr035345","DOIUrl":null,"url":null,"abstract":"Abstract Since the 2008 Wenchuan (Ms. 8.0) Earthquake, the foreland rivers of the Longmen Mountains have suffered from significant bed degradation, among which the Shi‐ting River has experienced the largest local degradation of more than 20 m in 7 years. Potential reasons of the dramatic degradation include: (a) sediment disconnectivity due to in‐channel weirs; (b) the mobilization effect on gravel of an increased sand supply as a result of earthquake‐induced landslides; and (c) sediment extraction due to intensive mining. In this paper, we study the complex interaction among the above‐mentioned factors in the Shi‐ting River, using a one‐dimensional river morphodynamic model. Simulation results show that in‐channel weirs can reduce bedload transport and lead to bed degradation that is proportional to weir height. When coupled with additional sand supply, the weirs preferentially trap gravel and deliver sand, augmenting the downstream mobility of gravel and thus the degradation. For the Shi‐ting River, the simulated bed degradation agrees well with the observation when an annual sediment mining of 16 million tons is implemented in the simulation, along with the effects of in‐channel weirs and sand supply. The contribution of sediment mining is one order of magnitude larger than the coupling effect of weirs and sand supply. Both the simulation and observation show that the largest bed degradation occurs downstream of the Renmin Weir, due to the large spatial interval between the Renmin Weir and the next grade control structure.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"1 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023wr035345","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Since the 2008 Wenchuan (Ms. 8.0) Earthquake, the foreland rivers of the Longmen Mountains have suffered from significant bed degradation, among which the Shi‐ting River has experienced the largest local degradation of more than 20 m in 7 years. Potential reasons of the dramatic degradation include: (a) sediment disconnectivity due to in‐channel weirs; (b) the mobilization effect on gravel of an increased sand supply as a result of earthquake‐induced landslides; and (c) sediment extraction due to intensive mining. In this paper, we study the complex interaction among the above‐mentioned factors in the Shi‐ting River, using a one‐dimensional river morphodynamic model. Simulation results show that in‐channel weirs can reduce bedload transport and lead to bed degradation that is proportional to weir height. When coupled with additional sand supply, the weirs preferentially trap gravel and deliver sand, augmenting the downstream mobility of gravel and thus the degradation. For the Shi‐ting River, the simulated bed degradation agrees well with the observation when an annual sediment mining of 16 million tons is implemented in the simulation, along with the effects of in‐channel weirs and sand supply. The contribution of sediment mining is one order of magnitude larger than the coupling effect of weirs and sand supply. Both the simulation and observation show that the largest bed degradation occurs downstream of the Renmin Weir, due to the large spatial interval between the Renmin Weir and the next grade control structure.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.