Xiaoxia Wu, Jie Xing, Yonglei Lyu, Jingjing Yu, Jinghui Yang, Dawei Qi, Xin Wang, Jie Lin, Guoliang Shao, Aiguo Wu, Jianwei Li
{"title":"Kinetic control over co-self-assembly using an in situ dynamic covalent reaction resulting in a synergistic chemo-photodynamic therapy","authors":"Xiaoxia Wu, Jie Xing, Yonglei Lyu, Jingjing Yu, Jinghui Yang, Dawei Qi, Xin Wang, Jie Lin, Guoliang Shao, Aiguo Wu, Jianwei Li","doi":"10.1016/j.xcrp.2023.101598","DOIUrl":null,"url":null,"abstract":"Multicomponent self-assembly offers a strategy to explore ordered, complex, and dynamic nanosystems and to harness the property of the whole system beyond that of each subcomponent. However, the spontaneous nature of co-self-assembly makes control of the process difficult. Here, we use a thiol-disulfide exchange reaction as an in situ dynamic covalent reaction to slowly produce disulfide macrocycles that subsequently trigger the co-self-assembly with an anticancer drug and a photosensitizer. The gradual concentration growth of products shows kinetic control over the concentration of self-assembling disulfides, resulting in a stable co-delivery nanosystem with high drug-loading efficiency (31.78%) and encapsulation efficiency (95.91%). The nanosystem possesses biocompatibility, tumor-accumulating ability, and biosafety and shows a synergistic chemotherapeutic and photodynamic anticancer effect in vitro and in vivo. Our findings suggest that in situ dynamic covalent chemistry advances control over co-self-assembly, paving the way to more functional nanosystems with potential applications in biomedicine, electronics, and renewable energy.","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"42 1","pages":"0"},"PeriodicalIF":7.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101598","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multicomponent self-assembly offers a strategy to explore ordered, complex, and dynamic nanosystems and to harness the property of the whole system beyond that of each subcomponent. However, the spontaneous nature of co-self-assembly makes control of the process difficult. Here, we use a thiol-disulfide exchange reaction as an in situ dynamic covalent reaction to slowly produce disulfide macrocycles that subsequently trigger the co-self-assembly with an anticancer drug and a photosensitizer. The gradual concentration growth of products shows kinetic control over the concentration of self-assembling disulfides, resulting in a stable co-delivery nanosystem with high drug-loading efficiency (31.78%) and encapsulation efficiency (95.91%). The nanosystem possesses biocompatibility, tumor-accumulating ability, and biosafety and shows a synergistic chemotherapeutic and photodynamic anticancer effect in vitro and in vivo. Our findings suggest that in situ dynamic covalent chemistry advances control over co-self-assembly, paving the way to more functional nanosystems with potential applications in biomedicine, electronics, and renewable energy.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.