Nikolay I. Salnikov, Alexey V. Andrianov, Elena A. Anashkina
{"title":"Optimization and Dispersion Tailoring of Chalcogenide M-Type Fibers Using a Modified Genetic Algorithm","authors":"Nikolay I. Salnikov, Alexey V. Andrianov, Elena A. Anashkina","doi":"10.3390/fib11110089","DOIUrl":null,"url":null,"abstract":"M-type optical fibers in which a core is surrounded by a thin ring layer with a higher refractive index have attracted increasing attention in recent years. One of their advantageous features is the ability to operate a non-fundamental LP02 mode possessing unusual dispersion properties, namely, a zero-dispersion wavelength (ZDW) shifted to the short wavelength region relative to the material ZDW. The LP02 mode can be selectively excited since it is predominantly localized near the core, while the fundamental LP01 and other higher modes are localized near the ring (for proper fiber parameters). In this paper, we present a comprehensive theoretical analysis of effective dispersion tailoring for the HE12 mode of highly nonlinear chalcogenide glass fibers (for which the LP mode approximation fails due to large refractive index contrasts). We demonstrate fiber designs for which ZDWs can be shifted to the spectral region < 2 μm, which is of great interest for the development of mid-IR supercontinuum sources and frequency-tunable pulse sources with standard near-IR pumping. We obtained the characteristic equation and solved it numerically to find mode fields and dispersion characteristics. We show the possibility of achieving dispersion characteristics of the HE12 mode with one, two, three, and four ZDWs in the wavelength range of 1.5–5.5 μm. We used a modified genetic algorithm (MGA) to design fibers with desired dispersion parameters. In particular, by applying an MGA, we optimized four fiber parameters and constructed a fiber for which HE12 mode dispersion is anomalous in the 1.735–5.155 μm range.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":"37 5","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib11110089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
M-type optical fibers in which a core is surrounded by a thin ring layer with a higher refractive index have attracted increasing attention in recent years. One of their advantageous features is the ability to operate a non-fundamental LP02 mode possessing unusual dispersion properties, namely, a zero-dispersion wavelength (ZDW) shifted to the short wavelength region relative to the material ZDW. The LP02 mode can be selectively excited since it is predominantly localized near the core, while the fundamental LP01 and other higher modes are localized near the ring (for proper fiber parameters). In this paper, we present a comprehensive theoretical analysis of effective dispersion tailoring for the HE12 mode of highly nonlinear chalcogenide glass fibers (for which the LP mode approximation fails due to large refractive index contrasts). We demonstrate fiber designs for which ZDWs can be shifted to the spectral region < 2 μm, which is of great interest for the development of mid-IR supercontinuum sources and frequency-tunable pulse sources with standard near-IR pumping. We obtained the characteristic equation and solved it numerically to find mode fields and dispersion characteristics. We show the possibility of achieving dispersion characteristics of the HE12 mode with one, two, three, and four ZDWs in the wavelength range of 1.5–5.5 μm. We used a modified genetic algorithm (MGA) to design fibers with desired dispersion parameters. In particular, by applying an MGA, we optimized four fiber parameters and constructed a fiber for which HE12 mode dispersion is anomalous in the 1.735–5.155 μm range.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins