An environmentally friendly approach for the extraction and recovery of Mn from pyrolusite by ammonium sulfate roasting-water leaching and ammonium carbonate precipitation
{"title":"An environmentally friendly approach for the extraction and recovery of Mn from pyrolusite by ammonium sulfate roasting-water leaching and ammonium carbonate precipitation","authors":"Ruiyu Ma, Yali Feng, Haoran Li, Jinrong Ju, Shiwei Jiang, Haoyu Wang, Yunhao Li, Chenglong Xu, Zhonghua Xue","doi":"10.1002/apj.2999","DOIUrl":null,"url":null,"abstract":"<p>With the growth of the new energy industry, the requirements for manganese have increased significantly. In this paper, the method of manganese extraction from pyrolusite using ammonium sulfate roasting and water leaching was presented. At the optimal process parameters: mass ratio of (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> to pyrolusite of 2:1, the roasting temperature of 420°,C and duration of 120 min, the leaching efficiency of Mn and Fe was 94.55% and 54.38%, respectively. The mechanism analysis shows that MnO<sub>2</sub> and Fe<sub>2</sub>O<sub>3</sub> in pyrolusite were converted to (NH<sub>4</sub>)<sub>2</sub>Mn<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>, (NH<sub>4</sub>)<sub>3</sub>Fe(SO<sub>4</sub>)<sub>3</sub>, and NH<sub>4</sub>Fe(SO<sub>4</sub>)<sub>2</sub> by roasting with ammonium sulfate. Iron was removed from the leaching solution with the addition of ammonia. Afterward, manganese carbonate products were prepared from iron-free manganese sulfate solution by adding ammonium carbonate at a stirring duration of 60 min, a reaction temperature of 40°C, a pH of 7, and a molar ratio of ammonium carbonate to the manganese of 1.1:1, the precipitation efficiency of manganese could reach 99.8%, and the obtained manganese carbonate products were compliant with the industry standards. The ammonia released during the roasting process could be absorbed to regenerate (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> and the final filtrate after evaporation and crystallization could be used to recycle (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, both of which were used again into roasting process to reduce the consumption of raw material. In this process, the roasting temperature was only 420°C, which was significantly lower than the pyrometallurgical process suggested in earlier studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.2999","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With the growth of the new energy industry, the requirements for manganese have increased significantly. In this paper, the method of manganese extraction from pyrolusite using ammonium sulfate roasting and water leaching was presented. At the optimal process parameters: mass ratio of (NH4)2SO4 to pyrolusite of 2:1, the roasting temperature of 420°,C and duration of 120 min, the leaching efficiency of Mn and Fe was 94.55% and 54.38%, respectively. The mechanism analysis shows that MnO2 and Fe2O3 in pyrolusite were converted to (NH4)2Mn2(SO4)3, (NH4)3Fe(SO4)3, and NH4Fe(SO4)2 by roasting with ammonium sulfate. Iron was removed from the leaching solution with the addition of ammonia. Afterward, manganese carbonate products were prepared from iron-free manganese sulfate solution by adding ammonium carbonate at a stirring duration of 60 min, a reaction temperature of 40°C, a pH of 7, and a molar ratio of ammonium carbonate to the manganese of 1.1:1, the precipitation efficiency of manganese could reach 99.8%, and the obtained manganese carbonate products were compliant with the industry standards. The ammonia released during the roasting process could be absorbed to regenerate (NH4)2SO4 and the final filtrate after evaporation and crystallization could be used to recycle (NH4)2SO4, both of which were used again into roasting process to reduce the consumption of raw material. In this process, the roasting temperature was only 420°C, which was significantly lower than the pyrometallurgical process suggested in earlier studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.