Worst-Case Optimal Covering of Rectangles by Disks

Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, Sahil Shah
{"title":"Worst-Case Optimal Covering of Rectangles by Disks","authors":"Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, Sahil Shah","doi":"10.1007/s00454-023-00582-1","DOIUrl":null,"url":null,"abstract":"Abstract We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\\lambda \\ge 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , the critical covering area $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is the minimum value for which any set of disks with total area at least $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> can cover a rectangle of dimensions $$\\lambda \\times 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>×</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . We show that there is a threshold value $$\\lambda _2 = \\sqrt{\\sqrt{7}/2 - 1/4} \\approx 1.035797\\ldots $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mo>=</mml:mo> <mml:msqrt> <mml:mrow> <mml:msqrt> <mml:mn>7</mml:mn> </mml:msqrt> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:msqrt> <mml:mo>≈</mml:mo> <mml:mn>1.035797</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> , such that for $$\\lambda <\\lambda _2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo><</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> the critical covering area $$A^*(\\lambda )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> is $$A^*(\\lambda )=3\\pi \\left( \\frac{\\lambda ^2}{16} +\\frac{5}{32} + \\frac{9}{256\\lambda ^2}\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mn>3</mml:mn> <mml:mi>π</mml:mi> <mml:mfenced> <mml:mfrac> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mn>16</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>5</mml:mn> <mml:mn>32</mml:mn> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mfrac> <mml:mn>9</mml:mn> <mml:mrow> <mml:mn>256</mml:mn> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> </mml:mfenced> </mml:mrow> </mml:math> , and for $$\\lambda \\ge \\lambda _2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>≥</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> </mml:math> , the critical area is $$A^*(\\lambda )=\\pi (\\lambda ^2+2)/4$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>A</mml:mi> <mml:mo>∗</mml:mo> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>π</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msup> <mml:mi>λ</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> </mml:math> ; these values are tight. For the special case $$\\lambda =1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , i.e., for covering a unit square, the critical covering area is $$\\frac{195\\pi }{256}\\approx 2.39301\\ldots $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mn>195</mml:mn> <mml:mi>π</mml:mi> </mml:mrow> <mml:mn>256</mml:mn> </mml:mfrac> <mml:mo>≈</mml:mo> <mml:mn>2.39301</mml:mn> <mml:mo>…</mml:mo> </mml:mrow> </mml:math> . The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.","PeriodicalId":356162,"journal":{"name":"Discrete and Computational Geometry","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00454-023-00582-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $$\lambda \ge 1$$ λ 1 , the critical covering area $$A^*(\lambda )$$ A ( λ ) is the minimum value for which any set of disks with total area at least $$A^*(\lambda )$$ A ( λ ) can cover a rectangle of dimensions $$\lambda \times 1$$ λ × 1 . We show that there is a threshold value $$\lambda _2 = \sqrt{\sqrt{7}/2 - 1/4} \approx 1.035797\ldots $$ λ 2 = 7 / 2 - 1 / 4 1.035797 , such that for $$\lambda <\lambda _2$$ λ < λ 2 the critical covering area $$A^*(\lambda )$$ A ( λ ) is $$A^*(\lambda )=3\pi \left( \frac{\lambda ^2}{16} +\frac{5}{32} + \frac{9}{256\lambda ^2}\right) $$ A ( λ ) = 3 π λ 2 16 + 5 32 + 9 256 λ 2 , and for $$\lambda \ge \lambda _2$$ λ λ 2 , the critical area is $$A^*(\lambda )=\pi (\lambda ^2+2)/4$$ A ( λ ) = π ( λ 2 + 2 ) / 4 ; these values are tight. For the special case $$\lambda =1$$ λ = 1 , i.e., for covering a unit square, the critical covering area is $$\frac{195\pi }{256}\approx 2.39301\ldots $$ 195 π 256 2.39301 . The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.

Abstract Image

圆盘对矩形的最坏情况最优覆盖
摘要通过给出矩形的最坏情况最优磁盘覆盖的完整表征,给出了几何优化的一个基本问题的解:对于任意$$\lambda \ge 1$$ λ≥1,临界覆盖面积$$A^*(\lambda )$$ a∗(λ)是任意一组总面积至少为$$A^*(\lambda )$$ a∗(λ)的磁盘可以覆盖尺寸为$$\lambda \times 1$$ λ × 1的矩形的最小值。我们证明了存在一个阈值$$\lambda _2 = \sqrt{\sqrt{7}/2 - 1/4} \approx 1.035797\ldots $$ λ 2 = 7 / 2 - 1 / 4≈1.035797…,使得$$\lambda <\lambda _2$$ λ &lt;λ 2临界覆盖面积$$A^*(\lambda )$$ A∗(λ)为$$A^*(\lambda )=3\pi \left( \frac{\lambda ^2}{16} +\frac{5}{32} + \frac{9}{256\lambda ^2}\right) $$ A∗(λ) = 3 π λ 2 16 + 5 32 + 9 256 λ 2,当$$\lambda \ge \lambda _2$$ λ≥λ 2时,临界覆盖面积$$A^*(\lambda )=\pi (\lambda ^2+2)/4$$ A∗(λ) = π (λ 2 + 2) / 4;这些值很紧。对于$$\lambda =1$$ λ = 1的特殊情况,即覆盖一个单位正方形,则临界覆盖面积为$$\frac{195\pi }{256}\approx 2.39301\ldots $$ 195 π 256≈2.39301 ... .该证明使用了人工和自动分析的巧妙结合,展示了所采用的区间算术技术的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信