{"title":"Architecture for cellular enabled integrated communication and sensing services","authors":"Bo Liu, Qixun Zhang, Zheng Jiang, Dongsheng Xue, Chenlong Xu, Bowen Wang, Xiaoming She, Jinlin Peng","doi":"10.23919/jcc.fa.2023-0155.202309","DOIUrl":null,"url":null,"abstract":"There is growing interest in the integrated sensing and communication (ISAC) to extend the 5G+/6G network capabilities by introducing sensing capability. While the solutions for mono-static or bi-static ISAC have shown feasibility and benefits based on existing 5G physical layer design, whether and how to coordinate multiple ISAC devices to better exert networking performance are rarely discussed. 3 <sup xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">rd</sup> Partnership Project (3GPP) has initiated the ISAC use cases study, and the follow-up studies for network architecture could be anticipated. In this article, we focus on gNB-based sensing mode and propose ISAC functional framework with given of highlevel service procedures to enable cellular based ISAC services. In the proposed ISAC framework, three types of network functions for sensing service as Sensing Function (SF), lightweight-Edge Sensing Function (ESF) and full-version-ESF are designed with interaction with network nodes to fulfill the latency requirements of ISAC use cases. Finally, with simulation evaluations and hardware testbed results, we further verify the performance benefit and feasibility to enable ISAC in 5G for the gNB-based sensing mode with new design on SF and related signaling protocols.","PeriodicalId":9814,"journal":{"name":"China Communications","volume":"45 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/jcc.fa.2023-0155.202309","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
There is growing interest in the integrated sensing and communication (ISAC) to extend the 5G+/6G network capabilities by introducing sensing capability. While the solutions for mono-static or bi-static ISAC have shown feasibility and benefits based on existing 5G physical layer design, whether and how to coordinate multiple ISAC devices to better exert networking performance are rarely discussed. 3 rd Partnership Project (3GPP) has initiated the ISAC use cases study, and the follow-up studies for network architecture could be anticipated. In this article, we focus on gNB-based sensing mode and propose ISAC functional framework with given of highlevel service procedures to enable cellular based ISAC services. In the proposed ISAC framework, three types of network functions for sensing service as Sensing Function (SF), lightweight-Edge Sensing Function (ESF) and full-version-ESF are designed with interaction with network nodes to fulfill the latency requirements of ISAC use cases. Finally, with simulation evaluations and hardware testbed results, we further verify the performance benefit and feasibility to enable ISAC in 5G for the gNB-based sensing mode with new design on SF and related signaling protocols.
期刊介绍:
China Communications (ISSN 1673-5447) is an English-language monthly journal cosponsored by the China Institute of Communications (CIC) and IEEE Communications Society (IEEE ComSoc). It is aimed at readers in industry, universities, research and development organizations, and government agencies in the field of Information and Communications Technologies (ICTs) worldwide.
The journal's main objective is to promote academic exchange in the ICTs sector and publish high-quality papers to contribute to the global ICTs industry. It provides instant access to the latest articles and papers, presenting leading-edge research achievements, tutorial overviews, and descriptions of significant practical applications of technology.
China Communications has been indexed in SCIE (Science Citation Index-Expanded) since January 2007. Additionally, all articles have been available in the IEEE Xplore digital library since January 2013.