{"title":"Effect of Heat Treatment on Microstructure and Mechanical Properties of Medium-Carbon Steel Drawn Wire","authors":"Amina Ourabi, Mosbah Zidani, Salim Messaoudi, Tahar Abid, Mohamed Chaouki Nebbar, François Brisset, Thierry Baudin","doi":"10.4271/05-16-04-0026","DOIUrl":null,"url":null,"abstract":"<div>In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).</div>","PeriodicalId":45859,"journal":{"name":"SAE International Journal of Materials and Manufacturing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAE International Journal of Materials and Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/05-16-04-0026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the effect of heat treatment on the microstructure and mechanical behavior of medium-carbon steel wire intended for the spring mattress is investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction, Vickers hardness (Hv), and tensile strength. The results indicate that the microstructure elongation along the wire axis is observed with the bending and kinking lamellae at the deformation level of 57.81%, this change appears as a fracture in the microstructure and leads to an increase in hardness, tensile strength, and intensities of diffraction patterns. After heat treatment, we observed a redistribution in the grain, which is almost the same in the wire rod and drawn wires; indeed, this led to a decrease in hardness, tensile strength, and augmentation in intensities of peaks. The EBSD pole figures reveal the development of texture in the cementite slip plane (001).